REVIEW ARTICLE

RECORDS OF PHARMACEUTICAL AND BIOMEDICAL SCIENCES

A Review on Biological Activities of Different Parts of Cynara scolymus L.

Abdelaziz F. S. Farrag^b, Reda F.A. Abdelhameed^a, Amgad I. M. Khedr^b, Jihan M. Badr^a*

^a Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522. ^b Department of Pharmacognosy, Faculty of Pharmacy, Port Said University, Port Said, 42526.

Received on: 05. 11. 2022 Revised on: 27. 11. 2022

Accepted on: 03. 12. 2022

*Correspondence Author: Tel: +01091332451 E-mail address: jihanbadr2010@hotmail.com

Abstract

Biologically active materials have always been abundant in nature. The discovery of natural remedies can come from a variety of sources, including microorganisms, terrestrial plants, terrestrial invertebrates and vertebrates, and saltwater macro- and microorganisms. Historically, investigations on drug development have identified medicinal plants as a valuable source of bioactive chemicals. With 1900 genera and 32,000 species, including trees, shrubs, and herbs, the Asteraceae family is varied. Plants from the Asteraceae family are frequently utilized in traditional medicine as remedies. As antibacterial, anticholesterolemic, anti-cancer, antioxidant, and anti-inflammatory agents, they have been utilized to treat a variety of ailments. Therefore, several phytochemical studies were conducted to screen these genus plants, and this research identified several chemical compounds from diverse chemical classes, including fatty acids, flavonoids, triterpenes, sesquiterpene glycosides, phenolic acids, and sesquiterpene lactones. The most relevant prior biological research of several species in the genus Cynara scolymus L. are included in this study.

Keywords: Cynara scolymus L., biological activities

1. Introduction:

Globally, medicinal plants are widely used for prevention or treatment of many illnesses with minimal or no side effects. Curing with herbal medicine is back to prehistoric times (Farràs, 2021) and it is expressed about 90% of traditional therapies (Sofowora et al., 2013). So, many scientific papers were oriented to illustrate how these plants undergo their pharmacological effects. Previous studies involved the green medicine as a crude extract of whole plant (Elhady et al., 2022, Eltamany et al., 2022), an extract of certain parts (Goda et al., 2022, Duan et al., 2020), purified natural compounds (Elhady et al., 2022, Habib et al., 2022) or isolated certain bioactive fractions such as polyphenols, essential oils, saponins, alkaloids & polysaccharides (Micale et al., 2020,

Selim et al., 2022). Previous study reported the ability of C. scolymus L. to reduce fasting blood glucose level, A1C-derived average glucose (ADAG), and homeostatic model assessment (HOMA), that assess β -cell function and insulin resistance, in prediabetic patients (Rondanelli et al., 2013). Fallah Huseini and his coworkers proved the antihyperlipidemic effect of C. scolymus L. via reduction in total cholesterol level, and low-density lipoprotein (LDL) (Fallah et al., 2012). All these findings were pertained to the existed polyphenolic compounds. Polyphenolic compounds exhibited a crucial impact in treatment of cancer (Farrag et al., **2022**). This review will include the most significant previous biological studies of different parts of C. scolymus L.

2. Biological activities reported for Cynara scolymus L.

Part used and/or	Method	Dose/Conc. and	Results and	References
extract		duration	pharmacological effect	
I- Antioxidant acti	vity			
		ſ		
Fully matured leaves	DPPH free radical scavenging activity.	-	Results of the analysis indicated that overall, the leaves contained the highest concentration of total phenols. The antioxidant action was correlated to total phenolic content.	(Randhir et al., 2004)
The edible	DPPH free		The edible artichoke	(Wang et al. 2003)
artichoke heads	radical scavenging activity.		heads contained a significantly lower amount of phenols inside for dried mature heads. Different drying methods (oven-drying at 70 °C vs freeze-drying) were found to have no significant effect on the total phenol contents of the artichoke samples harvested on two different dates.	(wang et al. 2003)
Leaves,	DPPH (RSA)	-	Indi-cates that all samples	(El Sayed et al.
Leaves, receptacles, bracts and roots	free radical scavenging activity.	-	tested have noticeable effect on DPPH radical. The demonstrated high antioxidant activity in the edible receptacles and bracts are attributed to higher contents of phenolic constituents since a direct proportional association was observed between total phenolic content and activity.	(Ef Sayed et al. 2018)
The artichoke flower	DDPH ABTS Radical Scavenging Activity. Iron (II) Chelating Activity	-	Hydrolysis time significantly affected the antioxidant activity of ovalbumin hydrolysates with <i>C. scolymus</i> L. against the ABTS radical (p 0.01), producing a decline in the IC50 value and, concurrently, a rise in the TEAC, indicating a higher antioxidant power of the hydrolysates. Regarding the effect of the hydrolysis time in the iron chelating activity of the TH, no significant differences were	(Bueno-Gavilá et al. 2021)

Table 1: Biological activities reported for Cynara scolymus L.

			observed.	
Floral stem	DPPH,	-	showed strong free radical	(Mejri et al. 2020)
	ABTS, and		scavenging activity	
	FRAP in vitro		against DPPH and ABTS	
	assays		radicals. Methanol extract	
	j		was the most effective	
			radical scavengers	
II- Antimicrobial a	ctivity			
	The heater is 1			
The artichoke	The bacterial	-	Only a statistically	(Bueno-Gavilá et
flower	species		significant inhibitory	al. 2021)
	studied were		effect was observed (p \leq	
	Enterococcus		0.05) for the growth rate	
	faecalis		of E. faecalis. There was	
	(NCIMB		no antimicrobial effect of	
	775),		the hydrolysates against	
	Escherichia		the Gram-positive	
	coli (NCIMB		microorganisms	
	9484),		tested.	
	Listeria			
	innocua			
	(CCUG			
	15531), and			
	Pseudomonas			
	fluorescens			
	(NCIMB			
	9046).			
Floral stem	The disc	Dispensing 100	Methanol extract was the	(Mejri et al. 2020)
	diffusion	μL of inoculum	most effective against all	
	method	suspension 108	test microorganisms with	
		CFU/mL. Sterile	the effect being more	
		filter paper discs	pronounced against	
		(6 mm in	gram+ bacteria. The	
		diameter) were	strains S. aureus and E.	
		soaked with 15		
		μL of sample	sensitive. The gram–	
		extract (1	bacterial strains E. coli	
		mg/mL)	and S. typhimurium, and	
			the yeast C. albicans were	
			resistant to all AFS	
			extracts.	
Leaves	The disk	Disks (6.0 mm	The n-butanol fraction	(Zhu et al. 2004)
	diffusion	in diameter)	exhibited the most	
	method	impregnated	significant antimicrobial	
		with 0.025ml of	activities against all of the	
		each extract at a	tested microorganisms,	
		concentration of	followed by chloroform	
		10.0 mg/ mL	and ethyl acetate	
		were placed on	fractions.	
		the inoculated		
		plates.		
Floral stem	alloxan-	AFS extract	These observations	(Mejri et al. 2020)
	1. 1	(250 mg/kg b.w)	indicate that AFSE	
	diabetic mice	(250 mg/kg 0.07)		
	diabetic mice	(200 mg/kg 0.w)	ameliorated diabetes,	
	diabetic mice	(200 mg/kg 0)	,	
	diabetic mice	(250 mg kg 0.w)	ameliorated diabetes, presumably through enhanced insulin	
	diabetic mice	(250 mg kg 0.w)	presumably through enhanced insulin	
	diabetic mice	(250 mg kg 6.w)	presumably through enhanced insulin	

			improved glucose		
Artichoke leaves, bracts, flower and floral stem	Thirty type 2 diabetic individuals of both sexes in the age group of 35-45 years, who were not on insulin therapy	4 globe artichoke wheat biscuits containing 6grams of globe artichoke powder and distributed for each individual daily [morning (2) and evening (2)]	tolerance. A positive impact of globe artichoke in the reduction of fasting and post prandial blood glucose level.	(Nazni et al. 2006)	
Leaves aqueous extracts	Stz-induced diabetic Male Wistar rats	200 to 400 mg/kg/day, p.o.) 5 days after STZ treatment for 21 days.	Aqueous extract showed a significant antidiabetic effect and improved the lipid profile of diabetic mice.	(Heidarian and Soofiniya 2011)	
Flowering head	Adult male Wistar with a regimen of unlimited access to regular rodent chow	By a metal gavage at an infusion volume of 4 mL/kg, 30 min, Intragastrical	<i>Cynara scolymus L.</i> flowering head extract produced a marked decrease in glycemia	(Fantini et al. 2011)	
IV- anti-inflamma	tory activity				
Floral stem	inhibition of protein (Albumin) denaturation assay	1 mL of sample extract (1 mg/mL)	Results showed that EtoAc extract displayed the highest (98%) inhibitory effect, whereas methanol extract exhibited the lowest (69.5%) effect. The capacity of AFS extract to inhibit heat-induced albumin denaturation reflects its possible anti- inflammatory effect in vitro.	(Mejri et al. 2020).	
VI- Hepatoprotect	VI- Hepatoprotective, hypocholesterolimic and hypolipidemic activities				
leaves, receptacles, bracts and roots	CCl4 induced hepatotoxicity in Wistar albino rats	500, 900 mg/kg/day were compared with silymarin at a dose of 500 mg/kg/day.	Activities At a dose of 500 mg/kg/day, the receptacle extract is the most effective extract as hepatoprotective and hypolipidemic agent, comparable to silymarin at the same dose.	(El Sayed et al. 2018).	
Floral stem	alloxan- treated mice	Mice treated with AFS extract (250 mg/kg b.w)	AFSE has potential to lower lipid profile and prevent the development of atherosclerosis and cardiovascular complications in diabetic animals.	(Mejri et al. 2020).	

VII- Anti-spasmodic activity				
Fully matured leaves VIII- Cytotoxic act	Ileum	dichloromethane and ethyl acetate extract (0.1— 2.0 mg/ml)	A significant inhibitory effect for the contractile response elicited by acetylcholine on guinea- pig ileum.	(Emendörfer et al. 2005).
VIII- Cytotoxic act	livity			
The edible part (head) of fresh artichoke	breast cancer cell line, MDA-MB231	concentrations of AEs (from200 to 800 μ M for 24h)	Highdosesofpolyphenolicextracts(AEs) are able to activatean apoptotic program inMDA-MB231totumor progression.	(Mileo et al. 2015).
The edible parts (receptacles with inner and intermediate bracts) and leaves	Cell cytotoxicity assay on human carcinoma cells MSTO- 211H, MPP- 89 and NCI- H28 mesothelioma cell lines	Concentrations (ranging from 3 to 200 µg/ml)	<i>Cynara scolymus</i> L. affects malignant pleural mesothelioma by promoting apoptosis and restraining invasion	(Pulito et al. 2015).
The flower	Prostate cancer cell line, PC-3	concentrations of AE (0.1, 1, 10, and 100 µg/ml)	large doses of <i>Cynara</i> scolymus <i>L</i> . extracts can promote an apoptotic program in PC-3 to stop tumor progression.	(Khedr et al., 2022)

3. Conclusion

In this review we have discussed the biological activities reported in various parts belonging to *Cynara scolymus* L. It is obvious that this genus is a rich source of compounds with wide range of biological activities.

4. References:

Ardalani, H.; Jandaghi, P.; Meraji, A.; Moghadam M.H. The Effect of *Cynara scolymus* L., 2020, on blood pressure and BMI in hypertensive patients: A randomized, double-blind, placebo-controlled, clinical trial. *Complement Med Res*, 27, 40-46. DOI:10.1159/000502280.

Bueno-Gavilá, E., Abellán, A., Girón-Rodríguez, F., Cayuela, J.M. and Tejada, L., 2021. Bioactivity of hydrolysates obtained from chicken egg ovalbumin using artichoke (*Cynara scolymus* L.) proteases. *Foods*, 10(2), p.246.

Duan, L.; Zhang, C.; Zhao, Y.; Chang, Y.; Guo, L. 2020, Comparison of bioactive phenolic compounds and antioxidant activities of different parts of Taraxacum mongolicum. *Molecules*, 25, 3260. DOI:10.3390/molecules25143260

El Sayed, A. M., R. Hussein, A. A. Motaal, M. A. Fouad, M. A. Aziz and et al. 2018. "Artichoke edible parts are hepatoprotective as commercial leaf preparation." *Revista Brasileira de Farmacognosia*, 28, pp.165-178.

Elhady, S.S.; Goda, M.S.; et al., 2022. Meleagrin isolated from the Red Sea fungus Penicillium chrysogenum protects against bleomycin-induced pulmonary fibrosis in mice. *Biomedicines*, 10, 1164. DOI:10.3390/biomedicines10051164

Elhady, S.S.; Habib, E.S.; et al., 2022. Anticancer effects of new ceramides isolated from the Red Sea Red Algae Hypnea musciformis in a model of Ehrlich Ascites carcinoma: LC-HRMS analysis profile and molecular modeling. Mar. Drugs, 20, 63. DOI:10.3390/md20010063

Eltamany, E.E., Goda, M.S., Nafie, M.S., Abu-Elsaoud, A.M., et al., 2022, Comparative assessment of the antioxidant and anticancer activities of Plicosepalus acacia and Plico-sepalus curviflorus: metabolomic profiling and in silico studies. Antioxidants, 11, no. 7, 1249.

Emendörfer, F., Emendörfer, F., et al., 2005. Antispasmodic activity of fractions and cynaropicrin from *Cynara scolymus* on guinea-pig ileum. *Biological and Pharmaceutical Bulletin*, 28(5), pp.902-904.

Fallah Huseini, H.; Kianbakht, S.; Heshmat, R., 2012. *Cynara scolymus* L. in treatment of hypercholesterolemic type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. *J Medicinal Plants*, 11, 58-65.

Fantini, N., Colombo, G., et al., 2011. Evidence of glycemia-lowering effect by a *Cynara scolymus* L. extract in normal and obese rats. *Phytotherapy Research*, 25(3), pp.463-466.

Farràs, A.; Mitjans, M.; Maggi, F.; et al., 2021, V. Polypodium vulgare L. (Polypodiaceae) as a source of bioactive compounds: Polyphenolic profile, cytotoxicity and cytoprotective properties in different cell lines. Front Pharmacol, 12, 727528. DOI:10.3389/fphar.727528

Goda, M.S.; Nafie, M.S.; et.al. 2022. In vitro and in vivo studies of anti-lung cancer activity of Artemesia judaica L. crude extract combined with LC-MS/MS metabolic profiling, docking simulation and HPLC-DAD quantification. Antioxidants, 11, 17. DOI:10.3390/antiox11010017

Heidarian, E. and Soofiniya, Y., 2011. Hypolipidemic and hypoglycemic effects of aerial part of *Cynara scolymus* in streptozotocin-induced diabetic rats. *Journal of medicinal plants research*, 5(13), pp.2717-2723.

Khedr, A. I., Farrag, A. F., et al., 2022. Comparative Estimation of the Cytotoxic Activity of Different Parts of *Cynara scolymus* L.: Crude Extracts versus Green Synthesized Silver Nanoparticles with Apoptotic Investigation. *Pharmaceutics*, 14(10), 2185.

Khedr, A.I., Goda, M.S., Farrag, A.F., et al., 2022. Silver Nanoparticles Formulation of Flower Head's Polyphenols of *Cynara scolymus* L.: A Promising Candidate against Prostate (PC-3) Cancer Cell Line through Apoptosis Activation. *Molecules*, 27(19), p.6304.

Mejri, F., Baati, T., Martins, et al., 2020. Phytochemical analysis and in vitro and in vivo evaluation of biological activities of artichoke (*Cynara scolymus* L.) floral stems: Towards the valorization of food by-products. *Food Chemistry*, 333, p.127506.

Micale, N.; Citarella, A.; Molonia, M.S.; Speciale, A.; et al., 2020. Hydrogels for the delivery of plantderived (poly) phenols. Molecules, 25, 3254. *molecules*. DOI:10.3390/25143254 Nazni, P., Vijayakumar, T.P., et al., 2006. Hypoglycemic and hypolipidemic effect of *Cynara scolymus* among selected type 2 diabetic individuals. *Pak. J. Nutr*, 5(2), pp.147-151.

Pulito, Claudio, et al. 2015. "*Cynara scolymus* L. affects malignant pleural mesothelioma by promoting apoptosis and restraining invasion." *Oncotarget*, no. 5: p. 18134.

Randhir, R. and Shetty, K., 2004. Microwaveinduced stimulation of L-DOPA, phenolics and antioxidant activity in fava bean (Vicia faba) for Parkinson's diet. Process Biochemistry, 39(11), pp.1775-1784.

Rondanelli, M.; Opizzi, A.; et al., 2013. Metabolic management in overweight subjects with naive impaired fasting glycaemia by means of a highly standardized extract from *Cynara scolymus* L.: A double-blind, placebo-controlled, randomized clinical trial. *Phytother Res*, 28, 33–41. DOI:10.1002/ptr.4950

Selim, S.; Almuhayawi, M.S.; et al., 2022. In vitro assessment of antistaphylococci, antitumor, immunological and structural characterization of acidic bioactive exopolysaccharides from marine Bacillus cereus isolated from Saudi Arabia. Metabolites, 12, 132. DOI:10.3390/metabo12020132. Sofowora, A.; Ogunbodede, E.; Onayade, A., 2013. The role and place of medicinal plants in the strategies for disease prevention. *Afr J Tradit Complement Altern Med*, 10, 210–229. DOI:10.4314/ajtcam.v10i5.2

Wang, M.; Simon, J.E.; Aviles, I.F.; He, K.; Zheng, Q.-Y.; Tadmor, Y., 2003. Analysis of antioxidative phenolic compounds in artichoke (*Cynara scolymus* L.). *J Agric Food Chem*, 51, 601–608. DOI:10.1021/jf020792b

Zhu, X., Zhang, H., & Lo, R., 2004. Phenolic compounds from the leaf extract of arti-choke (*Cynara scolymus* L.) and their antimicrobial activities. *Journal of agricultural and food chemistry*, 52(24), 7272-7278.