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 Abstract 

Wingless-integrated/β-catenin (Wnt/β-catenin) signaling pathway plays a 

crucial role in the regulation of various processes including embryogenesis, 

organ development, injury repair, homeostasis and tissue remodeling. 

Upregulation or downregulation of this pathway is greatly implicated in 

different diseases such as liver and kidney diseases, lung fibrosis, 

osteoporosis, heart failure, vascular calcification, cellular senescence, 

neurodegenerative diseases and cancers. In brain, Wnt/β-catenin signaling is 

crucial for neuronal survival and neurogenesis, regulation of synaptic 

plasticity and blood-brain barrier integrity and function. Critically, Wnt/β-

catenin signaling is highly suppressed in Alzheimer’s disease (AD) brain. 

Moreover, loss of Wnt/β-catenin signaling is associated with amyloid-β 

production, hyperphosphorylation of tau protein in the brain and enhanced 

neuron susceptibility to Aβ-induced apoptosis, while its activation rescues 

Aβ-induced neuronal cell death and behavioral deficits. Moreover, it has been 

showed that Wnt/β-catenin signaling is crucial for synaptic plasticity that is 

associated with higher brain functions including memory and learning. 

Therefore, restoring Wnt/β-catenin signaling might be an interesting target 

for the rational design of novel therapeutic interventions in AD patients.  
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1. Introduction 

Alzheimer’s disease (AD), the most common form 

of dementia, is characterized by detrimental 

cognitive deficits and amyloid-β (Aβ) plaques 

accumulation and neurofibrillary tangles formation 

(Selkoe et al., 2016).  As a critical medical and 

social problem, there is an urgent need for effective 

therapies. The well-established amyloid hypothesis, 

based on presence of amyloid plaques in AD brain 

and identification of more than 200 mutations in the  

 amyloid precursor protein (APP) and presenilin 

(PSEN) genes, has been the principal driver of drug 

discovery efforts for several years (Ryman et al., 

2014; Selkoe et al., 2016). However, the use of 

anti-Aβ drugs in clinical trials has ended in failure 

(Long and Holtzman, 2019). Therefore, recent 

paradigms in AD drug discovery have shifted to the 

development of therapies that target the various 

disease processes associated with the progression 

of AD pathology (Futch et al., 2017; Cao et al., 

2018; Long and Holtzman, 2019). 
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The Wnt/β-catenin signaling pathway plays an 

important role in the regulation of cell proliferation, 

migration and differentiation (Nusse and Clevers, 

2017). Several studies have shown that dysregulated 

Wnt/β-catenin signaling is implicated in the 

pathogenesis of AD (Inestrosa and Varela-Nallar, 

2014). This review provides a brief overview of 

regulation and function of the Wnt/β-catenin 

signaling pathway in AD brain. More to the point, it 

provides evidence indicating that the Wnt/β-catenin 

signaling pathway might be a new attractive 

therapeutic target for drug discovery in AD. 

2. The canonical Wnt/β-catenin 

signaling pathway 

Wnt proteins are glycoproteins that bind to the 

extracellular domain of the Frizzled (Fzd) receptor 

family and the co-receptor low density lipoprotein 

receptor-related protein 5 or 6 (LRP5/6) activating 

the canonical Wnt/β-catenin signaling pathway. 

Such binding induces association of Axin with 

phosphorylated LRP6 and recruitment of the 

scaffold protein Dishevelled (Dvl) and casein kinase 

1 (CK1) in a complex that binds and inhibits 

glycogen synthase kinase 3β (GSK3β) leading to 

stabilization of cytosolic β-catenin. The latter then 

translocates into the nucleus and induces target 

genes expression. Wnts can no longer signal 

through this pathway. Thus, GSK3β will be 

activated, which in turn phosphorylates β -catenin, 

targeting it for degradation by the proteasome 

(Purro et al., 2014) (Figure 1).  

 3. Wnt/β-catenin signaling in the 

brain 

The Wnt/β-catenin signaling pathway is a principal 

pathway regulating cell death and survival (Nusse 

and Clevers, 2017). In fact, loss of Wnt/β-catenin 

signaling increases neuron susceptibility to Aβ-

induced apoptosis (Serrano-Pozo et al., 2011), 

while its activation rescues Aβ-induced neuronal 

cell death and behavioral deficits (Zhang et al., 

1998; De Ferrari et al., 2003; Quintanilla et al., 

2005; Esposito et al., 2006). In addition, numerous 

studies have reported that such signaling is a 

fundamental regulator of adult hippocampal 

neurogenesis (Boldrini et al., 2004; Qiu et al., 

2018). Previous studies have showed that Wnt/β-

catenin signaling is crucial for synaptic plasticity 

(Terry et al., 1991). The latter is associated with 

higher brain functions including memory and 

learning. Moreover, Wnt proteins, besides being 

required for synapse formation, they can also 

regulate neurotransmission pre- and post-

synaptically. In light of the above, activation of 

such signaling can protect from synapse loss that 

occurs at early stages in AD brain prior to neuronal 

death and is correlated with cognitive impairment 

(DeKosky and Scheff ,1990; Schneider et al., 

2016). 

Importantly, it has been established that the Wnt/β-

catenin pathway is required for blood brain barrier 

(BBB) formation, integrity, and function (Marques 

et al., 2013; Engelhardt and Liebner, 2014).  

 
Figure 1: The Wnt/β-catenin signaling pathway. (A) Wnt proteins bind to LRP5/6 and FZD, inhibiting GSK3β 

and blocking phosphorylation and degradation of β-catenin, resulting in its stabilization, accumulation and 

nuclear translocation with subsequent activation of the pathway. (B) When Wnt binding to receptors is blocked 

by Wnt antagonist, dickkopf 1 (Dkk1), β-catenin is phosphorylated and degraded by the proteasome (Purro et 

al., 2014). 
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Previous studies have showed that Wnt/β-catenin 

signaling is crucial for synaptic plasticity (Terry et 

al., 1991). The latter is associated with higher brain 

functions including memory and learning. 

Moreover, Wnt proteins, besides being required for 

synapse formation, they can also regulate 

neurotransmission pre- and post-synaptically. In 

light of the above, activation of such signaling can 

protect from synapse loss that occurs at early stages 

in AD brain prior to neuronal death and is 

correlated with cognitive impairment (DeKosky 

and Scheff ,1990; Schneider et al., 2016).  

Importantly, it has been established that the Wnt/β-

catenin pathway is required for blood brain barrier 

(BBB) formation, integrity, and function (Marques 

et al., 2013; Engelhardt and Liebner, 2014). Wnt 

ligands, Wnt7a and Wnt7b, are mainly produced by 

neurons and astrocytes in brain where they bind to 

Wnt receptor Fzd4 and co-receptor LRP5/6 

(Liebner et al., 2018), activating Wnt/β-catenin 

signaling in BBB endothelial cells (ECs). Such 

activation is an essential driver of BBB formation 

and function (Liebner et al., 2008; Daneman et 

al., 2009; Zhang et al., 2014). Mechanically, 

claudin-1, −3 and −5, the three major claudins 

expressed in brain ECs and the main constituent in 

the tight junctions that hold brain ECs together 

(Vanhollebeke et al., 2015) are the transcriptional 

targets of Wnt/β-catenin signaling in BBB ECs 

(Zhang et al., 2014; Main et al., 2018; Vallon et 

al., 2018). Moreover, Wnt/β-catenin signaling 

drives the expression of the BBB-specific glucose 

transporter GLUT1 and efflux transporter Pgp-1 in 

BBB ECs. Glucose transporter 1 (GLUT1), 

specifically expressed in BBB ECs, mediate glucose 

transport from the blood into the brain; and p- 

glycoprotein (Pgp-1), highly expressed on the 

luminal surface of BBB ECs, is an active efflux 
transporter (Liener et al., 2008; Zhou et al., 2014). 

Recent studies have found that Wnt/β-catenin 

signaling inhibits amyloidogenic processing of 

amyloid precursor protein (APP) and reduces Aβ42 

production and aggregation in the brain that is 

considered one of the key hallmarks of AD. On the 

other hand, Wnt inhibition has been reported to 

enhance APP processing, Aβ42 

production/aggregation and accelerate the 

development of AD-like pathology in mouse 

models (Parr et al., 2015; Tapia-Rojas et al., 

2016). 

Another hallmark of AD is the formation of 

neurofibrillary tangles (NFTs) that are composed of 

hyperphosphorylated tau protein in neurons   

 
(Bloom, 2014; Tapia-Rojas and Inestrosa, 2018). 

GSK3β mediated hyperphosphorylation of tau 

protein (p-tau) at AD- relevant phosphorylation 

sites. Activation of Wnt/β-catenin signaling inhibits 

GSK3β activity and subsequently suppresses tau 

phosphorylation (Wu et al., 2017). 

Microglial activation and neuroinflammation have 

been reported as pathological hallmarks of AD 

(Leyns and Holtzman, 2017; Caricasole et al., 

2019). There are conflicting findings regarding the 

implication of Wnt signaling in microglial 

activation and neuroinflammation. Wnt/ β-catenin 

signaling has been reported to be active in 

microglia during neuroinflammation, raising the 

question as to whether activated Wnt/β-catenin 

signaling in microglia is detrimental in AD brain, 

thus, further investigations will be required 

(Deming et al., 2019). Role of Wnt/β-catenin 

signaling in different physiological processes in the 
brain is summarized in Figure 2 (Jia et al., 2019). 

4. Loss of Wnt/β-catenin signaling in 

AD brain 

While the Wnt/β-catenin signaling pathway is vital 

for brain function, this pathway is highly 

suppressed in AD brain via multiple pathogenic 

mechanisms. It has been well established that age 

is a major risk factor for AD (Herrup, 2010; 

Garcia-Velazquez and Arias, 2017). Expression 

of Wnt and Dvl proteins is down-regulated, while 

expression of DKK1, Wnt antagonist, is up-

regulated in the aging brain, leading to inhibition of 

Wnt/β-catenin signaling (Qrellana et al., 2015; 

Carcia-Velazquez and Arias, 2017).  Importantly, 

the age associated decreased Wnt proteins 

astrocytic levels impairs adult neurogenesis (Jang 

et al., 2013; Qu et al., 2013), while restoring their 

levels by exercise enhances adult neurogenesis 
(Jang et al., 2013). 

More to the point, Wnt co-receptor LRP6 

dysregulation and loss of function have been 

demonstrated to be associated with down-regulated 

Wnt/β-catenin signaling in AD. LRP6 SNPs and an 

alternatively splice variant, associated with 

increased risk of developing AD, contribute to 

dysregulated Wnt co-receptor LRP6 and impaired 

Wnt/β-catenin signaling activity (De Ferrari et al., 

2007; Bayod et al., 2015). Deficiency in LRP6-

mediated Wnt/β-catenin signaling participates in 

amyloid pathology and synaptic dysfunction in AD 
(Sharma et al., 2013). 
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Figure 2: Role of Wnt/β-catenin signaling in the brain (Jia et al., 2019). 

Aβ peptides can enhance DKK1 expression and 

suppress Wnt/β-catenin signaling leading to synapse 

degeneration (Scali et al., 2006; Cerpa et al., 2011; 

Liu et al., 2014). DKK1 is upregulated in AD brain, 

where it colocalizes with hyperphosphorylated tau 

(Scali et al., 2006). Critically, there exists a 

pathogenic-positive feedback loop with Aβ peptides 

upregulating DKK1 expression, thereby inducing 

synapse loss and driving further Aβ production 

(Caruso et al., 2006). 

A growing body of evidence shows that GSK3β, 

one of major kinases responsible for β-catenin 

phosphorylation and degradation, displayed an 

increased activity in the brain of AD patients (Liu 

et al., 2002; Hooper et al., 2008; Niehrs, 2012) 
which could be attributable to the DKK1 up-

regulation and LRP6 down-regulation in the AD 

brain. Increased GSK3β activity has been 

demonstrated to be associated with decreased β-

catenin protein levels and suppressed Wnt/β-catenin 

signaling in AD brain (LIorens-Martin et al., 

2014). Notably, GSK3β is a major kinase for tau 

phosphorylation, thereby its over activation is 

intimately associated with tau 

hyperphosphorylation, Aβ accumulation, plaque-

associated microglial-mediated neuroinflammation 

and memory impairment (Liu et al., 2002; Hooper 

et al., 2008; Folke et al., 2019). 

5. Targeting Wnt/β-catenin signaling 

in AD therapy  

 
Considering that Wnt/β-catenin pathway is highly 

suppressed in the AD brain, restoring such 

signaling represents a unique strategy for rational 

AD therapy. 

5.1. The active lifestyle is associated with 

activation of Wnt/β-catenin signaling 

It has been reported that the improvement of 

cognitive function by lifelong exercise is associated 

with enhanced Wnt gene expression, increased 

LRP6 levels and decreased DKK1 protein levels 

stimulating Wnt/β-catenin signaling (Stranahan et 

al., 2010; Jang et al., 2013; Kirk-Sanchez and 
McGough, 2014).  

5.2. Estrogen inhibits DKK1 expression 

Estrogen-induced neuroprotection and attenuated 

tau phosphorylation are associated with inhibition 

of DKK1 expression and subsequent activation of 

Wnt/β-catenin signaling (Jia et al., 2019). On the 

other hand, reduced estrogen levels are associated 

with elevated DKK1 expression, suppression of 

Wnt/β-catenin signaling and in adulthood are 

correlated with increased risk of AD in women 

(Bayod et al., 2014; Pike 2017; Merlo et al., 
2017). 

5.3. GSK3β inhibitors 

Given the great impact of GSK3 activity on the AD 

pathogenesis, GSK3β inhibitors have been reported 

to suppress tau hyperphosphorylation and decrease  
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Aβ levels and rescue cognitive impairment in 

several models of AD (Hooper et al., 2008; Zhang 

et al., 2008). However, the extensive range of 

GSK3β substrates and physiological actions has 

limited the use of GSK3β inhibitors in AD therapy 

(Hooper et al., 2008; Maqbool et al., 2018). 

Therefore, novel selective GSK3β inhibitors 

regulating such kinase activity in Wnt/β-catenin 

signaling in brain are greatly needed. 

5.4. DKK1 inhibitors 

Importantly, it has been shown that DKK1 anti-

sense oligonucleotides (ASO) protect against 

neuronal apoptosis and attenuate tau 

hyperphosphorylation, and synapse loss induced by 

Aβ (Scali et al., 2006; ELiott et al., 2018). IIIC3, 

gallocyanine, is a DKK1 inhibitor that can inhibit 

DKK1 binding to LRP6 and restore Wnt/β-catenin 

signalling (Li et al 2012; Ren et al., 2019). IIIC3 

and its derivatives can attenuate DKK1-mediated 

Tau phosphorylation (Iozzi et al., 2012; Mpousis et 

al., 2016). However, whether these gallocyanine 

DKK1 inhibitors can cross the BBB or not, needs 

further investigation. 

5.5. Other activators of Wnt/β-catenin 

signaling 

Curcumin, a natural compound from the plant 

turmeric (Curcuma longa), exerts protective effects 

in various models of AD (Vargas et al., 2015; 

Farkhondeh et al., 2019). Curcumin has been 

reported to activate Wnt/β-catenin signaling by 

increasing Wnt proteins and Wnt co-receptor 

LRP5/6 expression and suppressing Wnt antagonist 

DKK1 expression (Zhang et al., 2012; Sanei and 

Saberi-Demneh, 2019). However, its poor brain 

bioavailability limited its use in AD therapy 

(Vargas et al., 2015; Farkhondeh et al., 2019). 

Interestingly, curcumin nanoparticles with an 

increased brain bioavailability have been noted to 

potently enhance adult neurogenesis and alleviate 

cognitive impairment in AD model through 

activating Wnt/β-catenin signaling (Zhang et al., 

2011). 

Statins, a class of hypocholesterolemic drugs, act by 

reducing cholesterol production by the liver.  

Previous studies suggest statin use in the protection 

against AD pathology via activation of Wnt/β-

catenin signaling (Jia et al., 2019). 

2-mercaptoethane sulfonate sodium (MESNA), a 

thiol compound with antioxidant properties, is 
FDA-approved for inhibition of hemorrhagic  

 
cystitis and usually combined with doxorubicin as 

a part of multidrug chemotherapy regimens that 

involve ifosfamide or cyclophosphamide (Keeney 

et al., 2018). It has been previously reported that 

MESNA could mitigate traumatic brain injury and 

improve doxorubicin-induced cognitive deficits 

and TNF-α-mediated markers of brain damage and 

oxidative stress (Yilmaz et al., 2013; Keeney et 

al., 2018). Interestingly, MESNA has been reported 

to reverse the AD-like pathology brought about by 

doxorubicin administration in a rat model with 

significant reduction in locomotor activity, 

constellating with considerable increments in 

spatial cognition ability. Additionally, it improved 

cholinergic function, attenuated brain apoE gene 

expression together with Aβ 1-42 accumulation and 

tau hyperphosphorylation, mitigated 

neuroinflammation and protected neuronal cells 

against apoptosis (Mohamad et al., 2022). Such 

effect might be attributable to potential anti-

inflammatory and antioxidant activity of MESNA 

by virtue of its free radicals scavenging ability via 

its sulfhydryl group (Keeney et al., 2018; Saadati 

et al., 2021). 

Infliximab (IFX), a chimeric monoclonal antibody 

against TNF-α, is used to treat autoimmune 

diseases and chronic inflammatory disorders. it has 

been demonstrated to be associated with reduced 

risk for AD in rheumatoid arthritis or psoriasis 

patients (Guo et al., 2013; Zhou et al., 2020). 

Previous studies have shown that systemic 

administration of an anti-TNF-α therapy mitigates 

elevated TNF-α brain levels in brain disorders 

(Sheen et al., 2016).  Given that TNF-α has been 

associated with diminished phagocytic efficiency, 

yet enhanced production of Aβ (Shi et al., 2011; 

Orti et al., 2019), its blockade or reduced levels 

help reverse enhanced Aβ production. Indeed, it 

has been verified that INF decreased amyloid 

plaques and tau phosphorylation in amyloid 

precursor protein/presenilin1 transgenic mice (Shi 

et al., 2011). Moreover, it improved the AD-like 

pathology induced by doxorubicin administration 

in rats as evidenced by enhanced cholinergic 

function, decreased brain apoE gene expression, 

Aβ 1-42 deposition and tau hyperphosphorylation 

via mitigating neuroinflammation (Mohamad et 

al., 2022). 

6. Conclusion 

Given the implication of Wnt/β-catenin signaling in 

several diseases, targeting this pathway represents a 

possible therapeutic approach for such diseases.  
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This can be accomplished through modulation of 

diverse components of Wnt/β-catenin signaling 

pathway. 
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