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 Abstract 

Rheumatoid arthritis (RA) is a debilitating disease characterized by 

chronic symmetric polyarthritis involving peripheral small joints. 

Heterogeneity in RA pathophysiology extends to a molecular level. 

Understanding the complicated interaction between genetics, 

environment, and autoimmunity, and their function in pathogenesis, is 

necessary for getting further insight into the mechanisms and outcomes 

that manage disease development and progression. Pharmacogenomics 

emphasizes the relations of numerous genetic signatures with responses 

to traditional disease-modifying drugs and biologics. More than 100 

genetic susceptibility loci have been recognized for RA through studies 

directed on patients with longstanding RA compared with healthy 

controls. So the interaction between genes and the environment may 

determine who is more susceptible to develop RA. This review pays 

attention to some recently discovered genetic risk loci in RA; 

ZNF804a, CDK1, YWHAH 14-3-3 η, and IL-17A. Also, their 

involvement in the etiology, pathogenesis, and outcome of the disease 

is explained, aiming to provide new insights into the pathogenesis of 

RA and the possibility to develop novel therapeutic approaches through 

targeting these genes. 

Keywords: Rheumatoid arthritis; ZNF804a; CDK1; 14-3-3 η; 

YWHAH; IL-17A. 

 

1. Introduction  

Rheumatoid arthritis (RA) is an inflammatory 

rheumatic disease that induces prolonged synovial 

inflammation, ultimately generates disabling joint 

injury as well as systemic complications (Smolen 

and Steiner, 2003). Several epidemiologic types of 

research show that the prevalence of RA is 0.5% –

1.0% (Cribbs et al., 2015). 70% and 80% of RA 

patients possess autoantibodies such as rheumatoid 

factor (RF) and anti-citrullinated protein antibodies 

(ACPA) (Smolen and Steiner, 2003). 

 The RA pathological process represents an 

autoimmune inflammation of the synovial joint 

membrane with proliferation of synovial cells and 

the formation of pannus. This pannus granulation 

tissue causes bone deterioration and articular 

cartilage erosion. Synovial tissue dysfunction 

facilitates the penetration of macrophages, 

fibroblasts, and lymphatic cells inside it. Pro-

inflammatory cytokines; mainly tumor necrosis 

factor (TNF), interleukin (IL) superfamilies, and 

growth factors; are produced by T-lymphocytes 

(Nemtsova et al., 2019). 
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 B-lymphocytes are involved in RF and ACPA 

autoantibodies production. Variances in ACPA and 

RF expression, disease manifestation rate and 

therapeutic response variability cause heterogeneity 

of RA patients that indicate the involvement of 

different pathophysiological mechanisms in the 

progression and development of the disease. 

Most rheumatic diseases involve complicated 

features in which various genetic and environmental 

factors associate. Twin studies have concluded that 

the heritability of RA is ~60% (MacGregor et al., 

2000). These results refer principally to RA patients 

with positive ACPA, whereas the heritability of RA 

patients with negative ACPA seems to be lower. 

Since 2007, genome-wide association study 

(GWAS) technologies have aided the description of 

genetic risk factors for numerous miscellaneous 

disorders (Consortium, 2007). More than one 

hundred genetic loci have been linked to RA 

(Okada et al., 2014). 

Figure 1 illustrates the complicated interaction 

between the “Bermuda triangle” of genetics, 

environment, and autoimmunity in RA  

 pathogenesis. Environmental factors as smoking, 

bacteria, and viruses, cause epithelial damage 

which leads to an inflammatory response that 

activates cytokines, chemokines, and growth 

factors as tumor necrosis factor-alpha (TNF-α), 

vascular endothelial growth factor (VEGF), and 

interleukins (ILs). These contribute to 

differentiation and proliferation of fibroblasts, 

increased synthesis, and activity of matrix 

metalloproteinases (MMP) that cause cartilage 

damage. Both genetic and environmental risk 

factors are associated with increased citrullination 

of proteins which lead to the production of ACPAs 

antibodies and allow an autoimmune response 

which also activates cytokines, chemokines, and 

growth factors causing inflammation of the 

synovial membrane of joints with synovial cells 

proliferation and pannus formation. 

 

As a genetic factor is obviously implicated in RA, 

it is necessary to understand the recently associated 

genes and their pivotal roles in RA. This review 

will describe recent genes associated with RA, 

envisaging a more reliable understanding of RA 

pathogenesis. 

 

 

Figure 1. Bermuda triangle of rheumatoid arthritis: genetics, environment, and autoimmunity. TNF- α tumor 

necrosis factor-alpha. VEGF vascular endothelial growth factor. ILs interleukins, MMPs matrix metalloproteinases, 

ACPA anti-citrullinated protein antibodies, RF rheumatoid factor. 
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2. ZNF804a gene 

Zinc-finger proteins (ZNFs) are abundant protein 

aggregations that have a broad molecular variety. 

As ZNFs have deeply divided domains, they can 

combine with DNA, RNA, poly-ADP ribose (PAR) 

and other proteins (Gibson et al., 1988; Vrana et 

al., 1988). ZNFs are also associated with the 

organization of multiple cellular processes. ZNFs 

functions include transcriptional control, cell 

migration, actin targeting, DNA repair, signal 

transduction, ubiquitin-mediated protein 

degradation, and many other approaches (Linke et 

al., 2008). 

Four exons and three introns on human 

chromosome 2q32.1 are found in ZNF804a gene 

which encodes a ZNF804a protein of 1210 amino 

acids (137 kDa) (Walters et al., 2010). While 

ZNF804a 's molecular function remains unknown, 

the sequence of amino acids contains the C2H2 

zinc-finger domain, indicating that ZNF804a plays 

a role in binding and transcribing DNA (Girgenti et 

al., 2012).  

ZNF804a gene has been associated with bipolar 

disorder (BD) and schizophrenia (SZ) (Rao et al., 

2017). ZNF804a is also distinguished as an 

important gene for anxiety disorder (Talkowski et 

al., 2012; Blake et al., 2014), autism spectrum 

disorder (Griswold et al., 2012), developmental 

disabilities and psychosis (Steinberg et al., 2011). 

In addition to the correlation of this gene with 

central nervous system diseases, it was recently 

identified as a systemic lupus erythematosus (SLE) 

vulnerability factor (Almlof et al., 2017). 

 There is a well-known link between the ZNF804a 

gene and RA pathogenesis, where 

phosphodiesterase 4B (PDE4B) protein that is 

involved in inflammatory processes is 

downregulated by this gene (Girgenti et al., 2012). 

PDE4B suppression can increase the cyclic AMP 

(cAMP) intracellular level and thus maintain 

immune balance and alter inflammatory actions 

(Maurice et al., 2014). One efficient therapy for 

RA is PDE4B antagonists that reduce TNF-α 

secretion (Li et al., 2018). The ZNF804a gene can 

therefore decrease TNF-α in RA by decreasing 

PDE4B proteins (Figure 2). In a recent study, we 

established the correlation between ZNF804a 

expression and RA activity and severity. Our study 

reported the down-regulation of ZNF804a in RA 

patients. Expression of ZNF804a was negatively 

associated with serum TNF-α levels in the RA 

patients. ZNF804a gene downregulation is 

expected to raise the levels of TNF-α that is 

considered an essential cytokine involved in the 

pathogenesis of RA (Fattah et al., 2020).  

Higher serum levels of TNF-α enhance RA disease 

activity, and severity as it is positively associated 

with levels of c-reactive protein (CRP), erythrocyte 

sedimentation rate (ESR), disease activity score 

(DAS)-CRP, DAS-ESR, RF, and ACPA (Wei et 

al., 2015) In our above-mentioned work; RA 

patients with lower expression of ZNF804a had 

considerably higher serum levels of CRP, DAS-

CRP, and RF, suggesting an impact of ZNF804a 

expression on the disease activity and severity– 

(Fattah et al., 2020). 

 

 

Figure 2. The relation of ZNF804a and RA pathogenesis. 
ATP adenosine triphosphate, cAMP cyclic adenosine 

monophosphate, AC adenylate cyclase, PDE4B 

phosphodiesterase4 B, ZNF804a zinc finger 804a, TNF- α 

tumor necrosis factor-alpha. - Indicates an inhibition (Fattah 

et al., 2020). 



                                                                                                   Rec. Pharm. Biomed. Sci. 5 (1), 18-27, 2021

  

3. CDK1 gene 

Cyclin-dependent kinases (CDKs) control the 

phases of cell division, commencing with 

quiescence, the G1/S phase transition, DNA 

replication in S phase, nuclear breakdown, 

chromosome condensation, segregation, and 

cytokinesis (Crosby, 2007). CDK1, the first CDK 

identified in all species (Nurse and Thuriaux, 

1980; Lohka et al., 1988), is retained and performs 

essential functions throughout mitosis. The S phase 

is triggered by CDK1 (Aleem et al., 2005).  

CDK1 gene forms 9 exons on human chromosome 

10q21.2, encoded as CDK1 enzyme 

(https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cm

d=DetailsSearch&Term=983). The development of 

fibroblasts in the synovium is correlated with CDK1 

to generate a hyperplastic RA pannus (Sekine et al., 

2008). Also, CDK1 activates the interferon (IFN) 

type I-induced phosphorylation of signal transducer 

and transcription 1 (STAT1) and enhances the up-

regulation of interferon-stimulated genes which 

leads to improvement of IFN-1 signaling (Wu et al., 

2016), that is involved in RA pathogenesis (Gordon 

et al., 2012). IFN-1 cytokines were found in RA 

synovium (Hu et al., 2008). IFN-1 was also 

observed in SLE patient's sera (Petri, 2006). 

The CDK1 gene is overexpressed in SLE (Wu et 

al., 2016; Almlof et al., 2017). We reported CDK1 

gene overexpression in RA patients. The serum 

levels of IFN-1 were significantly higher in RA 

patients (Fattah et al., 2020).  

 There was an association between CDK1 

overexpression and abnormal amplification of 

IFN-1 signaling in SLE (Wu et al., 2016). A 

significant positive correlation between CDK1 

expression and IFN-1 serum levels was observed 

in our study. Consequently, CDK1 gene 

overexpression may contribute to an increase in the 

IFN-1 serum levels in RA patients, which is 

essential for RA pathogenesis (Figure 3). CDK1 

expression was positively correlated with ACPA in 

RA patients while CRP, ESR, DAS-ESR, DAS-

CRP and RF had no association. This suggests that 

the CDK1 gene may impact the RA disease 

severity but not the activity (Fattah et al., 2020).  

4. YWHAH 14-3-3 Eta gene 

There are seven isoforms: α/β, γ, δ/ζ, ε, η, θ/τ and 

σ, in the 14-3-3 regulatory proteins 

(Maksymowych et al., 2014). Generally, these 

proteins are ubiquitous intracellular adapters (or 

chaperones) that interact with more than 200 

intracellular proteins and regulate their activities 

(Kilani et al., 2007). 

Serum 14-3-3 η, first described in 2007, is 

noticeable at a significantly higher serum and 

synovial fluid levels in RA patients than healthy 

people and those with other autoimmune diseases 

and viral/bacterial infections (Kilani et al., 2007). 

Extracellular 14-3-3 η in RA patient serum is an 

indicator for cell damage that extremely stimulates 

pro-inflammatory cytokines and bone-degrading 

enzymes (Maksymowych and Marotta, 2014).  

 

 

 
 

Figure 3. The relation of CDK1 and RA pathogenesis. CDK1 cyclin-dependent kinase 1, IFN interferon. + indicates 

stimulation. 

https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=983
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 14-3-3 η expression was strongly correlated with 

MMPs. ZMMPs are serine proteases, which play a 

significant role in tissue homeostasis. In the 

condition of RA, the discrepancy between these 

proteolytic enzymes expression and their cognate 

antagonist's triggers cartilage disintegration 

(Siebuhr et al., 2013). It has been defined that 

MMP expression is controlled by transcription 

factor Activator Protein 1 (AP-1) that determines 

intracellular signals, including Mitogen-Activated 

Protein Kinase (MAPK) (Kook et al., 2011). The 

extracellular regulated kinase (ERK), p38MAPK 

and Jun N-terminal kinase/stress-activated protein 

kinases JNK/SAPK, have been widely noticed in 

RA (Kyttaris, 2012). 

In early RA patients with gradual joint destructions, 

de Launay et al. (2012) reported significant 

changes in ERK and JNK activation, but not in 

P38MAPK activation, stressing their potential 

importance to RA etiology.  

Cell stimulation experiments have shown 14-3-3 η 

stimulation of the innate immune system, leading to 

the activation of major signals such as MAPK/ 

ERK, SAPK/JNK, and the JAK-STAT pathway 

which regulates the inflammatory and degradative 

factors production (Maksymowych et al., 2014a). 

Various RA associated transcriptional factors such 

as receptor activator of nuclear factor Kappa-B 

ligand (RANKL), joint degradation factors such as 

MMP-9, and pro-inflammatory cytokines, IL-1β, 

IL-6, TNF-α are upregulated by 14-3-3 η 

(Maksymowych et al., 2014b). CRP and fibrinogen 

synthesis can be triggered in the liver by IL-6 

(Rhodes et al., 2010). 

YWHAH gene spans 10 kb and encodes a protein 

246 amino acids long (Muratake et al., 1996). It 

consists of a long 8 kb intron and two 741 kb exons 

and is located on human chromosome 22q12.1–

q13.1 (Muratake et al., 1996; Takahashi, 2003). It 

codes the η of the 14-3-3 family of proteins, which 

are primarily found in the brain (Grover et al., 

2009). This gene has been associated with SZ and 

psychotic BD (Wang et al., 2005; Grover et al., 

2009). The YWHAH gene is expressed in synovial 

tissue (Kilani et al., 2007). YWHAH gene has been 

studied as a susceptibility gene for RA due to its 

action in joint deterioration. YWHAH 14-3-3 η was 

upregulated by 4.7 fold in synovial fluid from RA 

patients (Balakrishnan et al., 2014). YWHAH was 

reported to be overexpressed by 3.27 fold in 

synovial membrane and by 2.37 fold in peripheral  

 blood cells from psoriatic arthritis patients 

(Dolcino et al., 2015). 

5.  IL-17A gene 

Interleukin (IL)-17A is a cytokine that is involved 

in many autoimmune and inflammatory disorders 

(Miossec and Kolls, 2012). It is produced by Th17 

cells as well by cytotoxic CD8+ T cells (Tc17 

cells), invariant natural killer T cells (iNKT cells), 

lymphoid tissue inducer cells (LTi cells), γδ T 

cells, and other hematopoietic and non-

hematopoietic cells (Kim and Jordan, 2013). 

Experiments in vitro and in vivo have recognized 

the function of IL-17 in several cell types, which 

illustrate its relationship with the early and late 

chronic phases of many disorders. In keratinocytes, 

for example, IL-17A induces several chemokines 

expression, contributing to the mobilization of 

immune cells which characterize psoriasis 

(Beringer et al., 2016). Also, IL17A works locally 

on synoviocytes and osteoblasts leading to 

synovitis or joint damage in RA (Hot and 

Miossec, 2011; Ndongo-thiam and Miossec, 

2015), which is one of the most severe chronic 

inflammatory diseases (Smolen et al., 2016). 

The immunostaining of RA patients' synovial 

tissues has demonstrated that an IL-17 group of 

CD4+CD45RO+ T-memory cells has not been 

observed in synovial tissue from osteoarthritis 

(OA) patients. In comparison, the synovial fluid 

content of IL-17 is greater in RA patients than in 

OA, trauma and gout patients (Kotake et al., 

1999). In the lymphocytic infiltrate and the 

hyperplasic lining of the RA synovium, the IL-

17A-producer cells are detected (Kotake et al., 

1999). Th17 cells and synoviocytes interactions are 

critical, as they generate IL-17 massively (Noack 

et al., 2016). 

IL-17A partly contributes to cartilage injury. 

Sample synovial RA studies show that the 

production of leukemia inhibitory factor (LIF), 

macrophage inflammatory protein (MIP)-

3α/chemokine (C-C motif) ligand-20, and IL-6 by 

RA synovium are triggered by IL-17A (Chabaud 

et al., 1998; Chabaud et al., 1999; Chabaud et 

al., 2000). Additionally, the discovery of RA 

synovium anti-IL-17 antibody considerably 

impaired the development of MMP-1, collagenases 

but not of MMP (Timp)-1 tissue inhibitors, 

indicating the clear interaction with mutual 

degradation of IL-17 (Chabaud et al., 2000).  
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Several cytokines and chemokines, especially IL-6 

and IL-8, are massively produced by synoviocytes 

which are activated by IL-17A and IL-17F (Zrioual 

et al., 2008; Hot and Miossec, 2011; Hot et al., 

2011). Also, IL-17 is responsible for inducing tissue 

destruction through migration of synoviocyte and 

fostering a tissue- invasive phenotype (Hot et al., 

2012; Bottini and Firestein, 2013; Li et al., 2013). 

The injury to the tissue involves degradation of the 

cartilage matrix and bone deterioration. The major 

source of matrix disruption is MMP. Amongst such, 

MMP-1, 2, 9, and 13 synoviocytes and 

chondrocytes are caused by IL-17 in RA (Chabaud 

et al., 2000). 

IL-17A gene, which is located on chromosome 

locus 6p12, encodes the IL-17A cytokine 

(Jakubiuk-Tomaszuk et al., 2015). The IL17A 

gene occupies a total of 4252 bp composed of three 

exons and two introns and encodes a protein of 155 

amino acids 

(http://atlasgeneticsoncology.org/Genes/GC_IL17A.

html). The retinoid-related orphan receptor (ROR) γ 

T and RORα transcription factors regulate IL-17A 

expression. ROR γ T is expressed primarily by Th17 

cells and drives their differentiation (Khan and 

Ansar Ahmed, 2015). The expression of IL-17A 

gene and growth of Th17 cells are surprisingly 

guided not just by microorganisms and tumors, but 

also by several environmental factors including 

nutrients, metabolites, hypoxia, toxins, NaCl, and 

circadian rhythm (Kleinewietfeld et al., 2013). IL-

17 expression is increased in number of pathological 

disorders as asthma, pneumonitis and pulmonary 

fibrosis (Gurczynski and Moore, 2018). Also, the 

IL17A gene has been upregulated in breast cancer 

(Benevides et al., 2013) and gastric 

adenocarcinoma (Chen et al., 2011). Upregulation 

of IL-17A mRNA was reported in synovial fluid 

from RA patients (Chen et al., 2020). 

5. Conclusion 

ZNf804a and CDk1 genes have been identified as 

pivotal genes in various autoimmune diseases. 

These genes are implicated in RA progression 

through their effects on the expression of various 

cytokines as TNF-α and IFN-1. 14-3-3 η is a 

relatively novel biomarker for RA. Overexpression 

of YWHAH 14-3-3 η gene is associated with RA. 

IL-17A is considered an important cytokine in RA 

as it is produced by several immune cells. There is 

an increase in IL-17A gene expression in synovial 

fluid from RA patients, which may contribute to  

 synovitis. Yet, large scale studies are 

recommended to confirm the association of these 

novel genetic factors with inflammatory rheumatic 

diseases.  
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