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 Abstract 

The purpose of drug administration through the skin is to treat skin disorders on 

a topical level or to deliver drugs to the systemic circulation via transdermal 

absorption due to the variability in peak plasma concentration following oral and 

parenteral delivery. Ethosomes lipid-based nanovesicles with improved softness, 

deformability, and elasticity, are the most investigated vesicular system. Ethanol, 

cholesterol, and lecithin are used to prepare ethosomes. The loose hair follicles 

and Stratum Corneum (SC) percutaneous route allowed the ethosomes to 

permeate the epidermis. During percutaneous penetration, the vesicles were 

released into the superficial layer of the skin, allowing the therapeutic substances 

to penetrate while the phospholipids remained in the upper epidermis. 
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1. Transdermal drug delivery systems 

(TDDS): 
Skin, the biggest organ in the body, was not 

recognized as a route of drug delivery for systemic 

medications until the late twentieth century (El-

Menshawe et al., 2019). 

In the last decade, transdermal medication delivery 

has attracted much attention. According to experts, 

By 2025, the global transdermal drug delivery 

market is expected to reach $95.57 billion 

(Shewaiter et al., 2021). 

The SC, a 10 m-thick layer of dead, keratinized 

epidermal cells that act as a barrier for drug 

permeation, is the most typical way to absorb drugs 

through the skin. 

The purpose of drug administration through the skin 

is to treat skin disorders on a topical level or to 

deliver drugs to the systemic circulation via 

transdermal absorption. Because peak plasma  

 concentrations differ between oral and parenteral 

administration, overdosing becomes a common 

problem, making it difficult to efficiently monitor 

plasma concentration (Yu, Yang, et al., 2021). 

There are many advantages to (TDDS). For 

example, medications can avoid hepatic first-pass 

metabolism and factors that modify 

pharmacokinetics in the gastrointestinal tract, 

improving systemic bioavailability and lowering 

the risk of drug concentration-related side effects 

because the topically applied drugs are released in 

a predetermined range over a long time. This often 

increases patient compliance because it is easy to 

use with a low dose frequency (Ita, 2020). 

Moreover, the topical route provides a large and 

varied application surface and ease of self-

administration. It is an available alternative to both 

oral delivery and hypodermic drug injection. 

Skin physiology, drug physicochemical factors,  
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and the delivery system determine the frequency 

and degree of drug absorption through the skin. The 

present transdermal dosage forms, such as patches, 

ointments, and creams, are associated with several 

limitations. One of the most unpleasant side effects 

of transdermal patches is skin irritation, caused by 

their occlusive properties, which block sweat ducts, 

preventing water drainage from the skin surface. 

Other disadvantages include difficulties applying to 

curved surfaces, pain while peeling away, and a 

lack of aesthetic appeal (Belikov et al., 2015).  

Semisolid treatments, such as creams and 

ointments, may overcome some of these difficulties, 

but they also have limitations. Such forms do not 

maintain long-term contact with the skin and are 

wiped away by the patient's clothing. As a result, 

the repeated application is required in chronic 

conditions such as athlete's foot, ringworm, and 

candidiasis. Furthermore, their use may leave a 

sticky and greasy after application, resulting in poor 

patient compliance (Pereira et al., 2018).  

A dosage form that allows for less frequent 

administration while maintaining direct contact with 

the skin for an extended period is required to 

improve patient compliance (Kathe and Kathpalia, 

2017).  

  

1.1. Advantages of transdermal drug delivery: 

 Transdermal medication administration 

avoids the difficulties of gastrointestinal 

absorption, including enzymatic and pH-

related inactivation. 

 The metabolism of the first pass is 

bypassed. 

 Immediate medication warnings in the 

case of emergency and the ability to quickly 

reduce drug side effects by removing the 

patch. 

 Avoid incompatibility with the 

gastrointestinal tract.  

 Unwanted adverse effects are avoided. 

 It prevents drug levels from fluctuating. 

 It is simple to stop therapy at any 

moment. 

 Easiness of self-administration.  

 They are non-invasive, thus avoiding the 

discomfort of parenteral therapy.  

 This is of great benefit in nauseated or 

unconscious patients.  

 Transdermal therapy is a better approach 

to delivering drugs broken down by the 

stomach's acidic pH, not effectively 

absorbed by the intestine, or degraded by 

the liver (Shewaiter et al., 2021). 

 

 1.2. Disadvantages of transdermal drug 

delivery:  

 It is unable to achieve high serum drug 

levels. 

 It could not be made for drugs with huge 

molecular weights. 

 Pulsatile delivery of the drugs is not 

possible. 

 Drugs or formulations that irritate the 

skin are not acceptable. In general, local 

irritation at the application site is a 

possibility 

 High possibility of causing an allergic 

reaction. 

 A specific range of drug lipid versus 

aqueous solubility, namely a partition 

coefficient (PC) value between 1 and 3, is 

required to allow drug permeation of the 

transverse SC and the underlying aqueous 

layer. 

 Because of the intrinsic limitations of 

drug entrance imposed by the skin's 

impermeability, only potent drugs are 

suitable for transdermal therapy. 

 Long-term adherence is difficult. 

 

 

2- Lipid-based nanovesicles  
Lipid-based nanovesicles are spherical vesicles 

with an aqueous inner core and one or more lipid 

bilayers, with hydrophilic medications 

encapsulated in the internal core and hydrophobic 

drugs integrated into the external lipid bilayers. 

Liposomes, the most well-known and well-

developed lipid-based nanovesicles, comprise 

phospholipid molecules that stabilize the 

formulation (Chacko et al., 2020).  

The phospholipid component can interact with the 

lipids in the SC, causing a fusion mechanism and a 

transdermal effect. It has also been discovered that 

deformable liposomes pass through SC with intact 

structure. (Siler-Marinkovic, 2016). 

 However, because of its poor fluidity, its 

penetration into the deeper layers of the skin is 

limited, and accumulation is mainly seen in the 

epidermis (Yu, Meng, et al., 2021). so, significant 

efforts have been made to improve skin 

penetration.  

Ethosomes and transfersomes, lipid-based 

nanovesicles with improved softness, 

deformability, and elasticity, are the most 

investigated vesicular system (Natsheh and 

Touitou, 2020). 

Ethosomes are multilamellar nanovesicles that are  
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consisted of phospholipid and ethanol. Ethanol 

increases the fluidity of phospholipid bilayers, 

breaks down the SC membrane barrier, and thus 

enhances penetration (Mousa et al., 2022). 

 

3- Ethosomal system types  
(Figure.1) obtained the classification of ethosomal 

systems based on their compositions (Abdulbaqi et 

al., 2016).  

3.1. Classical ethosomes  

Classical ethosomes are a development of liposome 

that contains phospholipids, ethanol, and water.  

Classical ethosomes had many advantages over 

classical liposomes in transdermal drug delivery as 

they had a negative charge which established 

stability to vesicles and had smaller vesicles to 

achieve high entrapment efficiency % (Mousa et al., 

2022). 

3.2. Binary ethosomes  

Binary ethosomes were developed by adding a 

different type of alcohol as   Propylene glycol (PG) 

and isopropyl alcohol (IPA) to the classical 

ethosomes (Li et al., 2012; Shen et al., 2014). 

3.3. Transethosomes  

         The essential components of classical 

ethosomes are present in this ethosomal system, and 

an additional component, such as a penetration 

enhancer or an edge activator (surfactant) in their 

composition.  

          These novel vesicles were created to combine 

the benefits of classical ethosomes and deformable 

liposomes into a single formula to create 

transethosomes.  

           Many studies have found that transethosomes 

have better qualities than classical liposomes (Chen 

et al., 2014; Song et al., 2012).  

 

 4. Effects of materials used on 

ethosomal system properties: 
4.1. Ethanol  

Ethanol is a powerful penetration enhancer, and it 

helps ethosomes by giving particles unique 

properties such as small size, negative electric 

potential, stability, entrapment efficacy, and 

improved skin permeability. (Ascenso et al., 2015). 

Ethanol concentrations in ethosomes ranged 

between ~10%–40% (Puri and Jain, 2012). Many 

researchers concluded that when ethanol 

concentrations rise, the size of the ethosomes 

decreases (Li et al., 2012; Patel et al., 2012). 

 Bendas and Tadros (Garg et al., 2016) observed 

that ethosomes containing 40% ethanol had a 44.6 

% smaller mean vesicle diameter than  

 classical liposomes containing no ethanol  

(Nainwal et al., 2019). 

However, raising the ethanol concentration over 

40% causes the bilayer to leak, resulting in a minor 

increase in particle size and a significant reduction 

in encapsulation efficacy (EE). Elevating the 

ethanol concentration further would solubilize the 

vesicles (El-Menshawe et al., 2019).  

According to certain research, Interpenetration of 

the ethanol hydrocarbon chain occurs at high 

ethanol concentrations, resulting in a decrease in 

vesicular membrane thickness and, as a result, a 

decrease in vesicular size. (Abdulbaqi et al., 2016). 

Other researchers believe that ethanol alters the 

charge of the ethosomes, resulting in a good degree 

of stability and a reduction in mean particle size 

(Mishra et al., 2012; Verma and Pathak, 2012). The 

vesicular charge is a critical parameter that affects 

vesicular properties like stability and vesicle-skin 

contact. Because of the increased ethanol 

concentration in ethosomes, the vesicular charge 

has changed from positive to negative (Zhou et al., 

2010). The negative charge of simple ethosomes 

increases as the concentration of ethanol rises. 

(Abdulbaqi et al., 2016). 

Because ethanol gives a negative charge on the 

surface of ethosomes, it prevents the vesicular 

system from aggregating due to electrostatic 

repulsion. Besides, it has also been reported to have 

stabilizing properties (Abdulbaqi et al., 2016). 

Ethanol also affects ethosomes properties as 

entrapment efficiency (Abdulbaqi et al., 2016).  

4.2. Phospholipids  

Choosing the right phospholipid type and 

concentration for the formulation is crucial during 

the ethosomes development. They will affect the 

vesicles' size, encapsulation efficacy, electric 

potential, stability, and penetration into the skin 

layers (Natsheh and Touitou, 2020).   

In formulating ethosomes, Prasanthi and Lakshmi 

used three types of phospholipid (Phospholipon 

90H and 80H, and soy phosphatidylcholine). 

In an ethosomal formulation, phospholipid 

concentrations typically vary from 0.5% to 5%. 

Finally, increasing the concentration of 

phospholipids increases vesicular size slightly or 

considerably but does not significantly improve 

EE% (Ahad et al., 2013). 

4.3. Cholesterol  

Cholesterol is a rigid steroid molecule that 

increases drug stability and EE% in ethosomes. It 

lowers vesicular permeability vesicular fusion and 

prevents leakage. It is usually used at a 

concentration of <3% (Zhu et al., 2013). However,  
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it contributed to up to 70% of the overall 

phospholipid concentration in some formulations. 

Cholesterol increases the particle size of ethosomes 

in several studies. (Limsuwan and Amnuaikit, 

2012). Scientists found that ethosomal size rises 

from 136±42 nm to 230±27 nm when 25.87 mm of 

cholesterol was incorporated in the formulation (El-

Menshawe et al., 2019; Nainwal et al., 2019). 

The addition of cholesterol to the ethosomes 

boosted vesicular stability and rigidity. Other 

researchers have seen increased rigidity (i.e., 

decreased elasticity) of the ethosomal vesicles when 

cholesterol is added (Abdulbaqi et al., 2016). 

4.4. Diacetyl phosphate  

Diacetyl phosphate is commonly added to avoid 

vesicle aggregation and improve the formula's 

stability. The ethosomal formulation is used in 

concentrations ranging from 8% to 20% of the total 

phospholipid concentration (Hasan et al., 2013). All 

ethosomes, including diacetyl phosphate, formed 

vesicles with sharply negative potential (Abdulbaqi 

et al., 2016). 

4.5. Stearylamine  

Stearylamine induces a positive charge in 

ethosomes formulations. The first trial used an 

ethosomal system with a 2:1:1 molar ratio of 

phosphatidylcholine, cholesterol, and stearylamine; 

this combination was loaded with mycophenolic 

acid (Limsuwan and Amnuaikit, 2012). 

Stearylamine addition leads to a rise in particle size, 

a decrease in encapsulation efficiency, and a change  

 in the potential charge from negative to positive, 

resulting in vesicle aggregation within one week. 

The transdermal flux and the quantity of the drug 

delivered after 12 hours of the negatively charged 

ethosomes were significantly higher than the 

positively charged ethosomes (El-Menshawe et al., 

2019). 

4.6. Propylene glycol 

Penetration enhancers like PG are widely used. It 

has been discovered to alter the ethosomal 

properties of size, encapsulation efficiency, 

permeability, and stability when used to prepare 

binary ethosomes at concentrations ranging from 

5% to 20%(Limsuwan et al., 2017).  

Incorporating PG into ethosomal systems will 

result in even smaller particle sizes than systems 

without it (Amr Gamal et al., 2020). When the PG 

concentration was increased from 0% to 20% v/v, 

the VSdecreased significantly from 103.7 ± 0.9 nm 

to 76.3 ± 0.5 nm (Zhang et al., 2012). 

4.7. Isopropyl alcohol  

The effect of isopropyl alcohol (IPA) on a 

diclofenac-loaded ethosomal system's EE%and 

skin permeation was investigated. This study 

created classic ethosomes with 40% ethanol, binary 

ethosomes with 20% IPA and 20% ethanol, and 

ethosomes with 40% IPA (Dave et al., 2010). 

According to the transdermal drug-flux 

measurements through mouse skin, IPA 

significantly impacted EE%but minorly impacted 

drug release (Dave et al., 2010). 

 

 
 

Figure 1. Different types of ethosomal systems (Abdulbaqi et al., 2016). 
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5. Mechanism of skin permeation by 

ethosomes 
(Figure.2) shows that the drug penetration 

pathways through the intact SC are available via 

intercellular and transcellular routes (Abdulbaqi et 

al., 2016). Many factors influence the transport of 

medicines from topically applied vesicles into the 

skin. The size of the vesicle and the encapsulation 

quality are two essential factors that influence the 

topical administration of drugs. Smaller vesicles can 

quickly enter the deeper layers of the skin (Mbah et 

al., 2014). 

The size of the ethosomes is influenced by the 

amounts of phospholipids and ethanol. The size of 

the ethosome was shown to decrease as the 

concentration of ethanol increased, while the size of 

the vesicle increased with the concentration of 

phospholipids increased (Yang et al., 2017). 

The loose hair follicles and SC percutaneous route 

allowed the ethosomes to permeate the epidermis. 

The vesicles were released into the superficial layer  

 of the skin during percutaneous penetration, 

allowing the therapeutic compounds to penetrate 

while the phospholipids remained in the upper 

epidermis progressively. (Yang et al., 2017). The 

reported mechanism for enhancing drug 

permeability is based on the ethosomal system's 

synergistic effects of ethanol and phospholipids. 

(Akhtar and Pathak, 2012).  

Ethanol works as an effective penetration enhancer. 

At physiological temperature, the SC lipid 

multilayer of the skin is tightly packed and 

organized orderly. Ethanol raises the fluidity of SC 

lipids. The lipid bilayer arrangement in the skin is 

disrupted, and the density of skin lipids is reduced. 

The vesicle bilayer may become flexible and 

malleable as an effect of ethanol. These soft and 

flexible ethosomal vesicles more easily penetrate 

the disorganized SC lipid bilayers, and the fusing 

of these vesicles in the deeper layer of the skin 

allows medications to be released. (Abdulbaqi et 

al., 2016). 

 

 
 

Figure 2. Proposed mechanism of drug delivery from ethosomes through the skin (Abdulbaqi et al., 

2016). 

 



                                                                                             Rec. Pharm. Biomed. Sci. 6 (3), 120-127, 2022

  

Conclusion: 

Ethosomes are multilamellar nanovesicles that are 

consisted of a phospholipid, cholesterol, and 

ethanol. Ethanol increases the fluidity of 

phospholipid bilayers, breaks down the SC 

membrane barrier, and thus enhances the 

penetration of drugs into the deepest layers of the 

skin. 
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