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 Abstract 

Hepatocellular carcinoma (HCC) is the most common primary hepatic 

malignancy of adults and the second responsible cause of cancer-related death 

around the world. Hepatocellular carcinoma (HCC) accounts for about 90% of 

primary liver malignancies. In Egypt chronic hepatitis C virus (HCV) is a major 

health burden and a major risk factor for HCC. Alteration of DNA Methylation 

at promoter regions has a recognized role during early evolution and 

development of human diseases, including cancers. It can be in the form of 

hypermethylation, hypomethylation, and loss of imprinting. RUNX3 and p16 are 

tumor suppressor genes that may be inactivated by hypermethylation which is a 

key epigenetic mechanism that contributes to the initiation and progression of 

various types of human carcinomas including HCC.  
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1. Hepatocellular Carcinoma 

Hepatocellular Carcinoma (HCC) is a serious public 

health issue and the fourth leading cause of cancer 

mortality worldwide (Kudo et al., 2014; Suresh et 

al., 2020). HCC accounts for about 80% of the 

primary liver cancers while the other types include 

cholangiocarcinoma (10–20%) and angiosarcoma 

(1%) (Biswas et al., 2015). There is a striking 

variation in HCC incidence rate across geographic 

regions and at the global level. Over 800,000 people 

are diagnosed with liver cancer each year (Ferlay et 

al., 2019; Thylur et al., 2020).  

HCC predominantly affects men more than women 

(two to four times higher in men) with its highest 

incidence in the age group of 45–65 years (Wands, 

2007; Mittal et al., 2018). HCC is the fifth most 

common cancer in men and the ninth most  

 occurring cancer in women (Bray et al., 2018). The 

overall ratio of mortality to incidence is 0.95, which 

reflects the poor prognosis of HCC (Njei et al., 

2015). 

HCC is an extremely complex condition and there 

are multiple factors involved in the etiology of 

HCC. The HCC malignant progression is related to 

genetic, lifestyle and environmental factors 

(Younossi and Henry, 2016). The major risk 

factors for HCC include hepatitis B virus (HBV) 

and hepatitis C virus (HCV), diabetes, obesity, 

alcoholic fatty liver disease (AFLD), and non- 

alcoholic fatty liver disease (NAFLD). Additional 

risk factors that are also known to increase the 

incidence of HCC are tobacco smoking, food 

contaminants such as aflatoxins, familial or genetic 

factors, and various environmental toxins that act as 

carcinogens (Sanyal et al., 2010; Jindal et al.,  
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2019; Yang et al., 2019) (Figure 1). 

1.1. Risk Factors 

1.1.1. Viral hepatitis 

Chronic liver disease and cirrhosis remain the most 

important risk factors for the development of HCC 

of which viral hepatitis and excessive alcohol intake 

are the leading risk factors worldwide. Chronic viral 

hepatitis can lead to cirrhosis and/or HCC.  HBV 

and HCV are the most common causes of chronic 

hepatitis in the world (Constantin et al., 2010). 

HBV is a double-stranded, circular DNA molecule 

with eight genotypes (A to H). Geno- types A and D 

are more common in Europe and the Middle East, 

while genotypes B and C are more common in Asia 

(Bruix and Sherman, 2011). HCV is a small, 

single-stranded RNA virus, which exhibits high 

genetic variability (Choo et al., 1991). There are six 

different genotypes of HCV isolated. Genotypes I, 

II, and III are predominant in the Western countries 

and the Far East, while type IV is predominant in 

the Middle East (Suresh et al., 2020). Once 

infected with HCV, 80% of patients progress to 

chronic hepatitis, with ~20% developing cirrhosis 

(Asham et al., 2013). In hepatitis C, the 

development of HCC occurs almost exclusively in 

the liver with established cirrhosis; however, in the 

HALT-C trial, 8% of HCC occurred in patients with 

only advanced fibrosis (Lok et al., 2009). A 

synergistic effect with alcohol increases the 

incidence of HCC between 1.7-fold and 2.9-fold 

when compared to HCV–HCC alone (Puoti et al., 

2004; Singal and Anand, 2007). The risk of HCC 

was reduced significantly in patients who obtained a 

sustained viral response after treatment of HCV 

with a 54% reduction in all-cause mortality 

(Morgan et al., 2013). 

1.1.2. Alcoholic and non-alcoholic Fatty Liver 

Disease 

Over the last decade, fatty liver disease is emerging 

as one of the leading etiologies for chronic liver 

disease progressing to HCC (Pocha and Xie, 2019). 

The growing inclination towards western dietary 

pattern, sociocultural changes and the lifestyle with 

limited or no physical activity has sharply increased 

the incidence rates of NAFLD- and AFLD-

associated HCC across the continents (Romero-

Gómez et al., 2017; Wandji et al., 2020). 

 The pathological spectra of liver injury in 

promoting HCC development are similar in these 

two fatty liver diseases despite having divergent 

pathogenic origin with yet some key distinct 

features (Figure 2). Furthermore, a high-calorie 

diet and ethanol act synergistically at multiple 

levels potentiating hepatocarcinogenesis (Younossi 

and Henry, 2016). 

AFLD is attributed to excessive alcohol 

consumption that causes hepatic injury by the build-

up of fats, inflammation, and scarring leading to 

HCC, which could be fatal. Globally, the 

prevalence of AFLD is increasing and has become a 

significant contributor to the liver disease burden 

accounting for 30% of HCC related deaths (Pennisi 

et al., 2019). By contrast, excessive alcohol 

consumption (more than 14 drinks/week and 7 

drinks/week for men and women, respectively) is 

considered to cause AFLD (Wandji et al., 2020). 

The threshold level of alcohol intake causing 

hepatotoxic effect varies and it depends on a variety 

of factors such as gender, ethnicity, and genetics 

(Gramenzi et al., 2006). 

1.1.3. Diabetes and obesity 

Sixty percent of patients older than 50 years with 

diabetes or obesity are thought to have non-

alcoholic steatohepatitis (NASH) with advanced 

fibrosis (Rinella, 2015). Chronic medical 

conditions such as diabetes mellitus and obesity 

increase the risk of HCC. Diabetes mellitus directly 

affects the liver because of the essential role the 

liver plays in glucose metabolism. It can lead to 

chronic hepatitis, fatty liver, liver failure, and 

cirrhosis. Diabetes is an independent risk factor for 

HCC (Wang et al., 2012; Gao et al., 2013). 

Patients with diabetes have between 1.8- and 4-fold 

increased risk of HCC. When compared to HCV, 

NASH-related HCC liver transplants increased by 

nearly four times in the decade from 2002 to 2012 

(Wong et al., 2014). 

It is well-known that obesity is associated with 

many hepatobiliary diseases, including NAFLD, 

steatosis, and cryptogenic cirrhosis; all of which 

can lead to the development of HCC (Calle et al., 

2003; Reddy and Rao, 2006). Obesity itself 

increases the risk of HCC by 1.5- to 4-fold. The 

relative risk of HCC is 117% for overweight 

subjects and 189% for obese patients (Larsson and 

Wolk, 2007).  
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Figure 1. The etiology of hepatocellular carcinoma. A variety of risk factors have been associated with the development 

of HCC, including hepatitis viruses, carcinogens, heredity diseases, metabolic syndrome, and fatty liver disease. The 

mechanisms by which these etiological factors may induce hepatocarcinogenesis mainly include p53 inactivation, 

inflammation, oxidative stress, and telomere shortening leading to genomic instability and activation of multiple 

oncogenic signaling pathways (Suresh et al., 2020). 

 

 
 

Figure 2. Molecular mechanisms involved in nonalcoholic- and alcoholic-associated HCC. High-calorie diet and 

excessive alcohol consumption are the major risk factors for the development of NAFLD and AFLD, respectively. 

Despite the divergent pathogenic origin, the pathological spectra of liver injury in promoting HCC development in 

NAFLD and AFLD share common molecular pathways (Suresh et al., 2020).  
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1.1.4. Other predisposing conditions:  

Males are more likely to be infected with viral 

hepatitis, consume greater quantities of alcohol, 

smoke cigarettes, and have a higher body mass 

index than women. Androgens (AR) are male 

hormones that have been increasingly reported in 

male-predominant HCC (Montella et al., 2015). 

They are mainly involved in various physiological 

and pathological activities by combining with 

androgen receptors (ARs) (Beato and Klug, 2000). 

A study by Wu et al (Wu et al., 2010), identified 

that overexpression of ARs enhanced HCC cell 

growth and invasion in vitro, and HCC initiation in 

vivo. Previous studies have reported higher 

androgen levels and more active androgen response 

elements (AREs) in liver tumor tissues, compared 

with control tissues (Barone et al., 2009; Wang et 

al., 2009). AR binding to ARE of the cell cycle 

related kinase promoter region controls activation of 

the β-catenin/T-cell fac tor signaling pathway and 

has been identified as a major carcinogenic event 

and described in animal models and up to 90% of 

HCC cases (Feng et al., 2011). 

Ligand-stimulated AR upregulated miR-216a, 

resulting in tumorigenesis, and AR and miR-216a 

were concordantly over-expressed in clinical 

specimens (Chen et al., 2012). Both activity and 

secretion of aromatase, an enzyme which converts 

androgens to estrogens, was markedly increased in 

human HCC tissues and HepG2 cells (Koh et al., 

2011). 

Aflatoxin produced by Aspergillus species (molds) 

found on grains, corn, peanuts, or soybeans stored 

in warm humid conditions is a potent 

hepatocarcinogen. The risk of HCC with aflatoxin is 

dependent on the dose and duration of exposure. 

Aflatoxin exerts a synergistic effect on HVB- and 

HCV-induced liver cancer, the risk being 30 times 

greater with chronic HBV plus aflatoxin exposure 

than with aflatoxin exposure alone (Liu and Wu, 

2010). The most potent aflatoxin, AFB1, when 

removed from the environment has resulted in a 

reduction of the incidence of HCC (Chen et al., 

2013). 

The risk of HCC with hereditary hemochromatosis 

is estimated to be between 100- and 200-fold (Ko et 

al., 2007). Other iron over- load states such as 

thalassemia have not only been associated with 

HCC but also have a high prevalence of HCV that 

may contribute to the increased risk of primary liver  

 
cancer. South African blacks who consume beer 

brewed in nongalvanized steel drums have 

increased iron stores leading to an increase in the 

risk of HCC 10 times that of people with normal 

iron stores (Gandini et al., 2008). 

Studies investigating the use of oral contraceptive 

pills and the risk for development of HCC have 

been inconclusive; however, a review of six studies 

showed a significant increase in HCC risk with a 

longer duration (>5 years) of exposure to oral 

contraceptives (Maheshwari et al., 2007). 

2. Epigenetics 

The term “epigenetics” was coined by Conrad Hal 

Waddington, a British developmental biologist in 

1942, to describe the “whole complex of 

developmental processes” linking genotype and 

phenotype (Waddington, 2012). Since then, this 

concept has changed several times (Deichmann, 

2016), and recent studies on epigenetics at the 

molecular level mainly cover changes in DNA 

methylation, histone modifications, non-coding 

RNAs (ncRNAs), and higher-order chromatin 

structure. Epigenetic mechanisms define mitotically 

heritable differences in gene expression potential 

without altering the primary DNA sequence. These 

mechanisms are highly regulated by a large number 

of proteins that establish, read, and erase specific 

epigenetic modifications, thereby defining where 

and when the transcriptional machinery can access 

the primary DNA sequences to drive normal growth 

and differentiation in the developing embryo and 

fetus. Several types of epigenetic marks work in 

concert to drive appropriate gene expression 

(Inbar-Feigenberg et al., 2013) (Figure 3). Even 

though the role of epigenetics was first recognized 

in development, an increasing amount of evidence 

has shown that it is also related to the development 

and progression of many common disease (Jin and 

Liu, 2018). 

2.1. Epigenetic marks 

DNA methylation, histone modifications, and 

ncRNAs are described below as independent 

mechanisms, but it is important to note that there is 

cross-talk between the different epigenetic marks to 

regulate the epigenome (Weber et al., 2007; Otani 

et al., 2009). 

2.1.1. Histone modifications 

The basic unit of chromatin consists of an octamer 

of histone proteins, two each of H2A, H2B, H3, and  
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Figure 3. Epigenetic mechanisms affecting gene expression. Epigenetic patterns are established by a number of 

mechanisms. Epigenetic marks include DNA methylation and covalent modifications of histone proteins. DNA methylation 

is established and maintained by the DNMT enzymes. DNA is wrapped around histone protein cores composed of an 

octamer containing two copies of each core histone: H2A, H2B, H3, and H4. Together, these form the basic unit of 

chromatin, the nucleosome. Histone modifications are regulated by several enzymes including histone acetyltransferases 

(HATs) and deacetylases (HDACs). Acetylation of histone proteins by HAT commonly found in euchromatin (relaxed state 

of chromatin) and is associated with active transcription. Deacetylation of histone proteins by HDAC and methylation of 

DNA by DNMTs is a hallmark of heterochromatin (condensed state of chromatin), which is associated with transcriptional 

repression (Inbar-Feigenberg et al., 2013). 
 

 

Figure 4. Schematic representation of histone modifications. The methylation sites are represented in red color at H3K4, 

H3K9, H3K27, H3K36, H3K79, and H4K20. The acetylation sites are shown in green color at amino acid H3K9, H3K14, 

H3K18, and H3K23 and H4K5, H4K8, H4K12, and H4K16. The phosphorylation site is indicated in blue color at H3S10. 

82 A ubiquitination site is randomly designated in brown color or H2A (Nayan et al., 2015). 



74 
 

H4. DNA wraps around this core, which provides 

structural stability and the capacity to regulate gene 

expression. Each core histone within   the 

nucleosome   contains a globular domain   and a 

highly dynamic N-terminal tail extending from the 

globular domains. Histone proteins have tails that 

can have a number of post-translational 

modifications including acetylation, methylation, 

phosphorylation, ubiquitylation, simulation, ADP-

ribosylation, proline isomerization, citrullination, 

butyrylation, phosphorylation, and glycosylation 

(Fraga et al., 2005) (Figure 4). 

2.1.2. Regulatory ncRNAs 

Non-coding RNAs (ncRNAs) are also required for 

epigenetic regulation of gene expression. Although 

eukaryotic genomes transcribe up to 75% of 

genomic DNA, approximately 3% of these 

transcripts encode for proteins; the majority are 

ncRNAs, which can be classified according to size 

and function (Consortium, 2011; Djebali et al., 

2012). Regulatory ncRNAs; including small 

interfering RNAs (siRNAs), microRNAs 

(miRNAs), and long ncRNAs (lncRNAs); play 

important roles in regulation of gene expression at 

several levels: transcription, mRNA degradation, 

splicing, and translation (Kaikkonen et al., 2011).  

siRNAs are double-stranded RNAs that mediate 

post-transcriptional silencing, in part by inducing 

hetero- chromatin to recruit histone deacetylase 

complexes (Grewal, 2010).  

miRNAs comprise a class of endogenous, small 

(18–24 nucleotides in length); single-stranded 

RNAs that can control gene expression by targeting 

specific mRNAs for degradation and/or translational 

repression (Hutvágner and Zamore, 2002; Lee et 

al., 2003). They can also control gene expression by 

recruiting chromatin-modifying complexes to DNA 

through binding to DNA regulatory regions, thereby 

altering chromatin conformation (Chuang and 

Jones, 2007; Carthew and Sontheimer, 2009).  

Long interfering non-coding RNAs (LincRNAs), a 

subset of lncRNA, exhibit high conservation across 

different species. They have been shown to guide 

chromatin-modifying complexes to specific 

genomic loci, thereby participating in the 

establishment of cell type–specific epigenetic states 

(Guttman et al., 2009). 

2.1.3. DNA methylation 

 One of the best studied epigenetic mechanisms is 

DNA methylation (Maunakea et al., 2010). DNA 

methylation is typically associated with gene 

silencing through binding of methylation-sensitive 

DNA binding proteins and/or by interacting with 

various modifications of histone proteins that 

modulate access of gene promoters to 

transcriptional machinery. In eukaryotic species, 

DNA methylation involves transfer of a methyl 

group (CH3) to the cytosine at the carbon 5 position 

(Figure 5) of the CpG dinucleotide (Lande-Diner 

et al., 2007). The   vast majority of mammalian 

DNA methylation occurs at CpG dinucleotides 

(Ibrahim et al., 2006; Lande-Diner et al., 2007). 

3. Epigenetics in liver cancer 

The role of epigenetic deregulation in HCC is being 

increasingly recognized (Pogribny and Rusyn, 

2014). In addition to changes in DNA methylation, 

microRNA expression, mutations affecting 

epigenetic regulatory genes have recently been 

discovered in HCC (Fujimoto et al., 2012). HCC 

cells display global hypomethylation as well as 

promoter hypermethylation of a large set of genes 

(Poungpairoj et al., 2015). Promoter 

hypermethylation appears to affect mainly tumour 

suppressor and antiproliferative genes resulting in 

downregulation of gene expression. Aberrations in 

microRNA expression have also been observed 

with several of them being linked to metabolic and 

phenotypic changes in HCC cells (Sandoval and 

Esteller, 2012). Several genes encoding epigenetic 

regulatory proteins are involved in hepatocellular 

malignancy. Expression of histone deacetylases 

(HDACs) is deregulated in different cancers 

(Weichert, 2009), and some of them are also 

deregulated in HCC. HDACs-1, -2 and -3 are over-

expressed in HCC (Quint et al., 2011). 

3.1. The runt domain-related transcription 

factor (RUNX) family genes 

The RUNX family genes, which are composed of 

RUNX1, RUNX2, and RUNX3, are essential 

regulators of cell fate in the development and 

regulation of p53-dependent DNA damage response 

and/or tumorigenesis (Blyth et al., 2005; Ito, 2008; 

Ozaki et al., 2013). RUNX3 gene is one of the 

most critical members of the runt domain family 

and plays a critical role in the regulation of cell 

proliferation, apoptosis, angiogenesis, as well as 

cell adhesion and invasion (Lund and Van 

Lohuizen, 2002; Subramaniam et al., 2009). 
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Figure 5. The mechanism of DNA methylation. DNA methylation is   exerted by DNA methyltransferases (DNMTs) 

(DNMT3a- DNMT3b-DNMT1). DNMTs at the 5 -position of cytosine residues in CpG dinucleotides transfer methyl 

groups from SAM (S-adenosylmethionine) to SAH (S-adenosylhomocysteine); thus, 5-methylcytosine is formed 

(Ciechomska et al., 2019). 

RUNX3 gene, localized in chromosome 1p36, a 

region that exhibits frequent loss of heterozygosity 

events in breast, colon, gastric, and ovarian cancers, 

is considered as a tumor suppressor gene involved 

in the transforming growth factor-beta (TGF-β) 

signaling pathway (Levanon et al., 1994). RUNX3 

and p53 are both principal responders of the p14 

(ARF)-MDM2 cell surveillance pathway that 

prevents pathologic consequences of abnormal 

oncogene activation (Chi et al., 2009). Its precise 

function has been intensively studied in several 

tumors, with upregulation of inducing cell cycle 

arrest, apoptosis, and downregulation of cyclin D1 

expression (Li et al., 2002; Chi et al., 2005; 

Shiraha et al., 2011; Chen, 2012).  

Lack of protein expression of RUNX3 by promoter 

methylation (hypermethylation) has been found to 

play an important role in liver epithelial 

tumorigenesis and epithelial-mesenchymal 

transition of HCC (Li and Jiang, 2011; Shiraha et 

al., 2011; Tanaka et al., 2012). Decreased levels of 

RUNX3 mRNA have been observed in 50–92 % of 

HCC cases (Mori et al., 2005; Miyagawa et al., 

2006). Hypermethylation of the RUNX3 promoter 

was found in 41–76 % of HCC cases (Kim et al., 

2004; Mori et al., 2005; Nishida et al., 2008; 

Moribe et al., 2009). Hypermethylation of the 

RUNX3 promoter was also found to be more 

frequent in HCV-related HCC (81.8 %) (Nishida et 

al., 2008).  

 
Recently, the hypermethylation of RUNX3 was 

shown to be associated with HCC and 

significantly correlated with higher serum levels 

of alpha fetoprotein (AFP) in an Egyptian sample 

(El‑shaarawy et l., 2022). 

3.2. p16 gene 

The INK4 family is a family of cyclin-dependent 

kinase inhibitors that includes four members: 

p16INK4A, p15INK4B, p18INK4C and p19INK4D, which 

show analogous biological characteristics 

involved in inhibition of cell growth and in tumor 

suppression (Serrano, 1997; Komata et al., 

2003). The tumor suppressor p16 gene encodes 

proteins involved in the regulation of two 

fundamental cell cycle pathways, the p53 and the 

RB1 pathway. The INK4A locus is localized in 

short arm of chromosome 9 at position band 21.3 

(9p21.3) (Donovan and Slingerland, 2000). 

Using alternative exons, the p16 gene generates 

four transcriptional variants: p16INK4A, a cyclin-

dependent kinase inhibitor, p14ARF (alternative 

reading frame), which binds to MDM2 

(Robertson and Jones, 1999), p12 and p16 (Li et 

al., 2011). The structure of the p16 gene includes 

exons E1β, E1α, E2, E2, and E3 (Figure 6). p16 is 

a tumor suppressor gene and goes by several 

names: MTS-1 (major tumor suppressor 1), 

INK4a (inhibitor of cyclin-dependent kinase 4a)  
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or p16INK4 and CDKN2A (cyclin-dependent kinases 

inhibitor 2A). Its location at 9p21 is the site of loss 

of heterozygosity in several malignancies and 

unsurprisingly, p16 is thus implicated in several 

tumors (Serrano, 1997). 

p16 is a major inactivation target in HCC (Baek et 

al., 2000). Promoter hypermethylation of INK4A, 

resulting in the loss of INK4A RNA expression in 

HCC tissue specimens (Wang et al., 2012), has 

been attributed to the eventual loss of p16 

expression in 60–80 % of HCC specimens (Kaneto 

et al., 2001; Harder et al., 2008). 

Hepatitis virus-positive HCC specimens have 

higher p16 methylation levels compared to HCC 

specimens without hepatitis virus infection (Jicai 

et al., 2006; Feng et al., 2010). Hypermethylation 

patterns of p16 in HCC liver specimens also 

correlate with its hypermethylation in plasma and 

serum (Wong et al., 1999). In a recent study on 

Egyptian HCC patients, p16 promotor methylation 

showed association with HCC incidence. 

Additionally, it showed also a positive correlation 

with higher serum AFP and AST levels in the 

patients (El‑shaarawy et l., 2022). 

 
 

Figure 6. Schematic representation of the p16 gene (Li et al., 2011). 

4. Conclusion 

This review outlines the role of the epigenetic 

markers, especially the hypermethylation of tumor 

regulatory genes such as RUNX3 gene and p16 

gene, with the development and prognosis of 

hepatocellular carcinoma.  
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