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 Abstract 

Electrochemical sensors are situated as effective tools for the sensitive 

and selective determination of several heavy metal traces, pesticides, 

and a vast diversity of pharmaceuticals in different matrices. The 

development of advanced electrochemical sensors requires the 

collaboration of all scientific knowledge especially; computational 

chemistry, mathematics, and classical and quantum physics. This 

interdisciplinary in analytical chemistry made it possible to get benefits 

from molecular modeling, and simulations to develop more selective 

and sensitive electro-analytical platforms with lowered cost, time, and 

effort. Recently, the optimization of sensor design was more practical 

and robust in the light of computational simulation techniques such as 

molecular docking, dynamics simulation, and quantum calculations. 

Molecular modeling approaches (MMA) enabled the analyst to explore 

unrelenting molecular systems ranging from small chemical systems to 

massive biological molecules and material assemblies in the fields of 

computational chemistry. Furthermore, MAA has been recently used in 

the optimization of the design of different electrochemical sensors. 

Thus, in this review, we went over the different ap-plications of MMA 

and demonstrate these techniques on both the molecular and quantum 

levels. Moreover, we focused on the benefits of bringing such innovative 

techniques to the field of electro-analytical chemistry and highlighted 

some of the recently reported electrochemical sensors. 
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mechanics, Electrochemical sensors applications, Molecular imprinting. 
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1. Introduction 

The quality of human life has been far improved by 

advanced medical care and the newly developed 

pharmaceuticals (Petrova, 2014). Pharmaceutical 

products have a significant impact on public health; 

hence, the quality of these products must be 

monitored carefully through all of their 

manufacturing processes (Haleem et al., 2015). 

Pharmaceutical analysis research provided the 

regulatory authorities with various analytical 

techniques that competed to selectively determine 

the active pharmaceutical ingredients with higher 

sensitivities (Elsonbaty, Hassan, et al., 2022). Other 

research activities identified and quantitated 

hazardous impurities that have a tremendous 

negative impact on patients' health (Daoudy et al., 

2018). Recently, regulatory authorities have applied 

stringent control on food safety and the quality of 

nutritional products to protect consumers' health 

(Lehotay, 2018). This stringent control necessitated 

the development of various analytical methods to 

detect residuals and traces of pesticides, veterinary 

drugs, pollutants, toxins, and industrial byproducts in 

different food products to guarantee their suitability 

for use (Cannavan and Maestroni, 2010). 

Electrochemical sensors provide a perfect tool for the 

determination of various analytes in different 

matrices (Naresh and Lee, 2021). The development 

of several designs of sensors by incorporating 

advanced materials (nano metal-composites and/or 

ionophoric substances) enhanced their sensitivity 

and selectivity (Abdel-Raoof et al., 2021). 

Moreover, the development of biosensors paved the 

way to more selective determination of different 

biological targets as catecholamine 

neurotransmitters (Ribeiro et al., 2016), peptides  

 (Khatayevich et al., 2014) and some 

pharmaceuticals (Soomro, 2020). Biosensors are 

mainly formed of two parts; the bio-sensing 

platform which can be an enzyme, DNA, RNA, 

antibodies or drug receptors and the transducer 

portion as; graphite, graphene or a conductive metal 

which can be decorated by various nano metal 

composites to enhance their electrochemical 

conductivity and so their sensitivity (Zhang, 2015). 

Thus, most research activities in pharmaceutical 

analysis aim to achieve the accepted quality levels in 

both drug and food products. This goal would not 

have been possible without achieving the 

interdisciplinary in pharmaceutical analysis research 

with mathematics, biostatistics, chemometrics, and 

physical and computational chemistry (Elsonbaty, 

Hasan, et al., 2021). One example of the achieved 

interdisciplinary in the pharmaceutical analysis is 

shown in the previously reported papers, describing 

the design and optimization of selective 

electrochemical sensors for drug(s) quantification 

relying on computational chemistry approaches. 

Computational chemistry and molecular simulations 

found significant opportunities to serve in 

pharmaceutical analysis research (Lin, Li and Lin, 

2020; Elsonbaty, Madkour, et al., 2022). Many 

reasons urged the pharmaceutical analysis 

community to use computational chemistry 

applications through their research activities 

intensively. The most obvious reason is the need to 

validate their experimental work that tests the 

selectivity of the developed analytical platforms. 

Practical approaches to test the selectivity are time-

consuming, especially in the screening and 

developmental stages (Taylor, 1983; Dadgar and                   
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Burnett, 1995; Rahman and Khan, 2018). 

Furthermore, experimental methods suffer from 

burden errors and require several validations to 

confirm their results (Ortiz, Sarabia and Sánchez, 

2010). Molecular modeling (MM) and simulation 

approaches were intensively used to study the 

interaction between these platforms and analytes; 

moreover, they can validate the adopted 

experimental approach. Computational simulations 

help save time and effort to screen different 

macromolecules versus the analyte to discover the 

most promising candidates for further downstream 

development (Kontoyianni, 2017; Yu and Mackerell, 

2017).  

Nowadays, computers are essential tools in each field 

of chemistry, and their use urged the development of 

several software applications that perform different 

simulation and calculation tasks in chemistry 

(Kokalj, 2003; Cristea, Nagy and Agachi, 2005; 

Tetko et al., 2005; Plass et al., 2012). Structural 

elucidation techniques such as NMR, X-ray 

crystallography, and the recent cryoelectro 

microscopy were developed to explore the structural 

geometry of the biologically active molecules; 

enzymes, proteins, and nucleic acids. Then were 

handled by computer software to build a 3-D model 

of these structures in a process known as MM 

(Billeter, 1992; Garmann et al., 2015; Fernandez-

Leiro and Scheres, 2016). 

The ability of a chemist to quickly comprehend and 

intellectually process structures should not be un-

derestimated. Hence, molecular visualization 

software was first developed to allow scientists to 

visualize the 3-D structure of the biologically active 

molecules that are targets for different therapeutic 

molecules treating various diseases (Tetko et al.,    

2005; Goddard et al., 2018).                                                     

The thorough under-standing of the relation between 

the structures and functions of these biological 

molecules paved the way for drug discovery and 

development activities. Some other computational 

activities were pointed towards calculating different 

molecular properties such as; partial charges, charge 

distribution, electrostatic potentials, strain, 

solvation, and binding energies. These properties are 

essential to be defined for a molecule to aid in 

searching molecular conformations, energy 

minimization, predicting molecular behavior in 

various chemical systems like the ability to bind to 

specific functional groups on macro-molecular 

targets or stability of some interactions in gas and 

solvated media, and in calculating the molecular 

orbitals that are essential in calculating the infrared 

or ultraviolet transitions for a molecule (Neese, 

2009; Rasheed and Ahmad, 2011). 

The accelerating development in computers 

hardware led to the emergence of simulations 

software interested in studying the nature of the 

interaction between the molecular entities of a 

chemical system (Martin, 2013; Jurij and Per, 2015; 

Stone et al., 2016; Guzman et al., 2019). To simulate 

molecular systems, specific algorithms were 

developed to define the classical laws of physics to 

simulate molecular mechanics and predict atoms' 

motion in space. These algorithms that manage 

molecular signals and define their structural 

geometry are collectively known as forcefields. 

They store the governing parameters for each 

different molecular system to make further 

simulation activities such as; molecular docking and 

dynamic simulations feasible. Molecular docking is 

an early developed approach to study such                                                                                                                                     
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interaction by fitting smaller molecules into a 

macromolecule's spatial spaces (binding sites) as a 

part of an enzyme or a nucleic acid sequence. The 

importance of docking lies in its ability to predict and 

compare the favorability of a small molecule or a 

group of small molecules to a specific 

macromolecule binding site. It is considered an 

effective tool for the virtual screening of 

combinatorial databases (Agarwal and Mehrotra, 

2016; Fan, Fu and Zhang, 2019). Molecular dynamic 

simulations (MD) also gave the chance to explore the 

dynamic interactions of molecules in a chemical 

system within a predefined time frame predicting the 

different modes of interactions responsible for the 

stability of a chemical system. In addition, dynamic 

simulations studied the effect of solvation on the 

strength of binding between some small molecules in 

different solvents (Schneider, Sharma and Abha Rai, 

2008; Sharma, Kumar and Chandra, 2019). 

The prediction of the interactive behavior of 

electrons with their counterparts and their nuclei in a 

molecule was made possible by engaging the 

quantum mechanics (QM) equations (Alireza 

Lashkaripour, 2021). The density functional theory 

(DFT) is an approximation to solve the Schrödinger 

equation to simulate the wave function of the 

investigated system, which describes the probability 

of finding the electron in a given position (orbital) to 

signify the density of electrons in their orbital then 

one can determine the allowed energy states of the 

system. DFT aids in calculating important molecular 

properties such as charge distributions, total 

electronic energy, and dipole moment, which are 

essential to study the behavior of molecules in 

vacuum and solution media without relying on 

predetermined parameters (force fields)                     

(Sholl and Steckel, 2009). DFT has many 

applications in the field of molecular simulations as 

the determination of the solvation energy of 

molecules in differ-ent solvents, investigating the 

spectral characteristics of molecules, optimizing 

structures of coordi-nate compounds, and predicting 

the reactivity of various molecules in vacuum and 

solution (Platas-Iglesias et al., 2011; Chatterjee, 

2012; Van Mourik, Bühl and Gaigeot, 2014). 

This review presents the basic science behind some 

of the MM approaches as; molecular and quantum 

calculations, molecular docking, and dynamic 

simulations. Also, it gives some insights about the 

molecular selectivity of some reported 

electrochemical sensors that use advanced and 

macromolecular substances or imprinted polymeric 

networks illustrated by applying some quantum and 

molecular simulations. Moreover, we demonstrate 

some reported work studying molecular interactions 

between pharmaceutical targets and their selective 

electrochemical sensors utilizing various 

computational approaches. 

2. Molecular modeling (MM); 

fundamentals and functions 

MM techniques serve in aiding drug discovery 

research. Thanks to the human genome project, 

differ-ent biological targets' vast discovery was 

achieved. These extensive data extended our 

knowledge about the function of other genes and the 

interplay roles of various proteins and enzymes in 

various diseases. The advances in computational 

chemistry enabled us to use these big data to provide 

on-demand therapies based on knowledge about the 

different biological targets. 
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Due to the advancement in computational platforms, 

several software and algorithms were developed to 

study molecules and their interactions with 

biological targets. Molecular mechanics algorithms 

study different molecular interactions and calculate 

different energies by applying equations that follow 

the classical laws of physics to nuclei without 

considering their surrounding electrons. Torsional 

points, bond stretching, and non-bonded interactions 

were calculated and predicted by molecular 

mechanics. These predictions were based on 

parameters that define the interactions between 

different sets of atoms. These data were pre-stored in 

the utilized software. They were collectively known 

as force fields in biological systems simulations 

(Jorgensen and Tirado-Rives, 2005) or as interatomic 

potentials for the simulation of materials systems 

(Becker et al., 2013). Applying molecular mechanics 

equations achieved several essential functions such 

as; energy minimization, conformational search and 

identifying stable conformation, studying molecular 

motions and dynamics simulations, and calculating 

molecular properties. 

Both molecular and quantum mechanics were 

essential to develop the advanced software involved 

in MM. On the other hand, quantum mechanics 

equations were also designed to deal with 

interactions between electrons and nuclei based on 

the laws of quantum physics. These equations aid in 

calculating molecular orbital energies, specific 

conformation heat of formation, bond dissociation 

energies, dipole moments, and electrostatic 

potentials based on an ab-intio as DFT, which relays 

on solving the Schrödinger equation for electronic 

structures or a semi-empirical method as density-

functional tight-binding (DFTB) (Bannwarth, Ehlert 

and Grimme, 2019). The ab-intio (DFT) method 

tends to be more accurate in the predictions that 

require no stored force field parameters; however, it 

consumes more time; thus, it is implied in cases of 

small systems composed of hundreds of atoms. 

While the semi-empirical (DFTB) method uses the 

stored force field parameters to perform its 

predictions, it reduces the computation times and 

can deal with large systems such as; protein. 

Nevertheless, this comes with the cost of its lower 

accuracy and transferability. 

Regardless of the utilized computational method or 

software, several steps must be performed to pre-

pare molecules for downstream processing and 

become compatible with this software's quantum 

and molecular mechanics laws. First, the small 

molecules are drawn in a 2D-view, then using the 

molecular mechanics; they are converted to the 3D 

view. Finally, crucial steps are performed to prepare 

the molecules (ligands) for the primary operations. 

2.1. Energy minimization and atomic clashes 

correction 

Molecular mechanics identify the attractive and 

repulsive forces between the individual nuclei of 

each parameterized atom in the molecular structure. 

Studying the molecules and their interactions begins 

withdrawing their structures in a 2-D manner then 

being visualized into their 3-D form. However, the 

drawn designs are always energetically unfavored; 

hence, they need to be actively adjusted. Energy 

minimization is a critical step in which the energy of 

molecules is brought to a minimum where the bond 

lengths and angles are adjusted so that any clashes 

between atoms are re-corrected and any adverse 

While MMFF, PEF95SAC, and TAFF force fields 
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non-bonded interactions are neglected. Then, the 

initial potential energy of the 3-D system is 

calculated as the sum of all repulsive and attractive 

forces between its particles as described by the 

following equation: 

𝐸 (total) = ∑ 𝐸 (𝑏𝑒𝑛𝑑𝑖𝑛𝑔) +  ∑ 𝐸 (𝑠𝑡𝑟𝑒𝑐ℎ𝑖𝑛𝑔) +

 ∑ 𝐸 (𝑉𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠)  + ∑ 𝐸(𝑡𝑜𝑟𝑠𝑖𝑜𝑛) +

 ∑ 𝐸  (𝑐𝑜𝑙𝑢𝑜𝑚𝑏𝑖𝑐)  

Molecular mechanics software is applied for 

changing each bond length, angle, and torsion angels 

and calculates the total energy of the molecule after 

each change. By comparing the energies of the 

emerged structures, the software will finally hit the 

structure of the lowest energy and shows it as the 

final 3D structure. 

As discussed above, the energy minimization task is 

solely performed by molecular mechanics equations 

so that it will depend on the pre-stored force field 

data. Working with the appropriate force field data is 

very important in this step because specific force 

field data should be used in energy calculations 

according to the type of molecules to be handled. A 

force field is a set of mathematical equations that can 

describe the energy of a system based on the 

coordinates of its particles but with-out consideration 

of electrons (Lewis-Atwell, Townsend and Grayson, 

2021). Each force field contains the parameters that 

define atom types, bond stretching, bending, and 

torsion; thus, these parameters will change by 

changes in the kind of atoms of the admitted 

molecules. Several force fields are available for 

different types of molecules, for example, CHARM, 

AMBE, and GROMOS, which are responsible for 

simulations related to biomolecules such as proteins, 

DNA, RNA, and enzymes.  

are parameterized for small organic molecules. In 

addition, these force fields have different versions, 

for example, CHARMM22, CHARMM27, GRO-

MOS96, GROMOS45A3, GROMOS53A5, 

GROMOS53A6, AMBER91, AMBER94, 

AMBER96, AMBER99, MMFF94x, MMFF94s, 

and MMFF94. 

Further details about each force field type are 

supplied in Table (1). After minimizing the 3-D 

structure, several structural properties can be 

calculated. This process can aid in the further 

downstream processes, such as; the steric energy of 

the molecule is intrinsically calculated during the 

minimization process and is responsible for 

predicting the various strain energies within the 

molecule. Strain energies consider all bond 

compressions, bending, deformed torsions, non-

bonded atomic interactions leading to atom clashes, 

and unfavorable dipole-dipole interactions. Steric 

energy calculations are helpful in comparisons of 

different conformations of the same molecules. 

Other molecular properties can be beneficial as 

partial charges, molecular electrostatic potentials, 

and molecular orbitals. 

2.2. Partial charges calculation 

Electrostatic interaction is an essential type of non-

bonded intermolecular binding forces between 

molecules, and it plays a vital role in the biological 

and chemical environment. Valence electrons in an 

atom are those involved in electrostatic interactions. 

The classical view about valence electrons being 

localized upon specific atoms is not truly accurate as 

these electrons form a cloud delocalized around the 

whole atoms in the molecule. However, it spends  
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Table 1. Summary of recently reported force field protocols utilized in molecular mechanical simulations 

Title Description Ref. 

Amber12:EHT 

All-atom forcefield combining Extended Hueckel Theory (EHT) and 

Amber12. Parameterized for proteins and nucleic acids using Amber 

12, and parameterized for small molecules using 2D EHT. This 

forcefield is suitable for small molecules, macromolecules, or both. 

(Gerber and Müller, 

1995; Salomon‐

Ferrer, Case and 

Walker, 2013) 

Amber10:EHT 

Parameterized for proteins and nucleic acids using Amber, and 

parameterized for small molecules using EHT. The Amber10: EHT 

forcefield is more validated for proteins and nucleic acids than the 

Amber12: EHT forcefield. 

(Gerber and Müller, 

1995) 

Amber94 
This forcefield parameterized for proteins and nucleic acids, however, 

it is not suitable for most small organic molecules 

(Darian and 

Gannett, 2005) 

Amber99 
An all-atom forcefield parameterized for proteins and nucleic acids. 

This forcefield is not suitable for most small organic molecules. 

(Wang, Cieplak and 

Kollman, 2000) 

CHARMM27 
This forcefield parameterized for proteins, DNA and RNA, however, 

it is not suitable for most small organic molecules. 

(Mackerell, Feig 

and Brooks, 2004) 

Engh-Huber 

A united atom forcefield parameterized for crystallographic 

refinement of proteins. Explicit hydrogens are required for polar atoms 

(N and O). This forcefield is not suitable for most small organic 

molecules or DNA. 

(Engh and Huber, 

1991) 

MMFF94 

An all-atom forcefield parameterized for small organic molecules. 

Partial charges are based on bond-charge increments. Suitable for use 

with Generalized Born solvation models. 

(Halgren, 1996) 

OPLS-AA 

An all-atom forcefield parameterized for proteins and some small 

organic molecules. Partial charges are based on bond-charge 

increments that reproduce the original dictionary charges. Polar 

hydrogens have zero van der Waals radii. 

(Jorgensen, 

Maxwell and 

Tirado-Rives, 1996) 

PFROSST 

An all-atom forcefield parameterized for proteins, nucleic acids and 

small molecules. AMBER parameters are used for macromolecules 

and parmFrosst parameters are used for small molecules. 

(Pérez et al., 2007; 

Bayly and Mckay, 

2010; Sanchez, 

2013) 
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more time around these more electronegative atoms, 

creating a non-evenly distributed electronic cloud, as 

shown in Figure 1a. Studying charge distribution and 

calculating partial charges (PC) are essential for 

predicting electrostatic binding with many targets by 

dipole-dipole, hydrogen bonding, and Van der Waal 

interactions (Peerless et al., 2021). 

It is crucial to investigate the charge distribution of a 

molecule in its native environment. For example, a 

hydrophilic environment as water will mask the 

electrostatic interactions between molecules and their 

targets, while a hydrophobic or less polar hydrophilic 

environment may enhance the electrostatic interactions. 

The reason behind that is referred to the non-linear 

structure of water molecules. The charge distribution in 

water molecules tends to be shifted towards oxygen 

atoms Figure 1b, thus, forming a dipole. 
 

(a) (b) 

  

Figure 1: Electrostatic potential mapping of (a) 

amprolium ion; (b) water molecule generated by 

molecular operating environment (MOE) software. 

Electrostatic mapping of water molecule showing 

bond angel to illustrate the effect of molecular 

geometry to electronic distribution and polarization. 

Moreover, the high polarity of water molecules made 

them create a strong hydrogen bonding network. Due to 

the previous characteristics of water molecules, they can 

completely solvate any polar molecules or even the ions             

 which masks their ability to form strong electrostatic 

intermolecular interactions (Berg, Tymoczko and 

Stryer, 2002). An example of the importance of 

studying partial charges of molecules in their native 

environment is the dynamic simulation conducted on 

a system formed of amlodipine and sodium dodecyl 

sulfate (SDS) to study the complex formation 

between both of them in a different solvent 

environment (Attala et al., 2020). In water, it was 

noticed that AML could not achieve any interactions 

with SDS due to the effect of the 3-D hydrogen 

bonding network of water molecules, which buffers 

the partial charges of both molecules and solvates 

them completely isolating them from each other, as 

shown in Figure 2a. While in the case of the 

Methanol environment, methanol is less polar than 

water, so it solvated both molecules Figure 2b. 

However, it did not hinder their binding and complex 

formation due to its inability to completely buffer the 

partial charges on both molecules. 

 

(a) (b) 

  

Figure 2: The effect of the (a) aqueous; (b) 

methanol environments on amlodipine partial 

charges and its interactions with sur-rounding 

SDS molecules illustrated by dynamics simulation 

conducted by MOE Poincare Andreasen 

algorithm. 
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2.3. Molecular electrostatic potentials 

Charge distribution can be visualized over the whole 

molecule rather than on each separate atom as in partial 

charges (Reid and Collins, 2013). This can be done by 

quantum mechanical software considering the 

molecular orbitals using the semi-empirical method 

(DFTB) to view the electronic distribution over the 

whole molecule, which can help detect the electron-rich 

or poor positions to describe the molecular reactivity 

computationally and to predict modes of binding 

between different molecules and their targets (Murray 

and Politzer, 2017).  

2.4. Machine learning and the prediction of 

molecular properties  

Machine learning (ML) advances have invaded all 

aspects of life sciences due to their ability to perform 

large-scale explorations in the chemical environments 

based on quantum mechanics calculations which are 

essential in many processes of MM. ML is a category of 

artificial intelligence based on extensive databases to 

create a wide variety of training sets based on these data 

and then create rules to extract knowledge from these 

data sets (Remington et al., 2020). ML today has 

reached deep in quantum chemistry and molecular 

simulations; thus, it learns more and more from 

quantum mechanics to build models capable of 

predicting molecular properties (Schütt et al., 2019). 

Calculations of PC and potential surface energies (PSE), 

forms of mathematical equations that describe the 

energy of a single molecule based on its geometry 

(Unke et al., 2020), are essential for many MM 

processes. Most of these calculations are based on the 

electrostatic aspect of energy, as in free energy 

calculations, molecular docking, and dynamic 

simulations. PC and PES calculations can be performed 

with the highest accuracy using quantum mechanics. 

However, this approach is very time-consuming for 

systems, including an increased number of 

molecules. Several machine learning (ML) 

approaches perform PC and PES calculations with 

less time and acceptable accuracy. Artificial neural 

networks (ANNs) have been developed for such 

tasks using an ML approach called transfer learning 

which begins with a training model based on a set of 

data of general quantum mechanics calculations. 

Then, one can use this model to be retrained for other 

related calculations (Noé et al., 2020). Figure 3 

illustrates the summary of these processes based on 

ANNs. A recently developed approach that was 

found effective in predicting PC and PES is the 

Atom-Path-Descriptor (APD), a molecular 

descriptor. First, the APD algorism assigns the 

chemical environment of the 3-D chemical 

structures. Then, based on the APDs, an ensemble of 

ML algorisms called extreme gradient boosting and 

the random forest are used to build regression models 

for PC/PES predictions (Wang et al., 2020). 

 

Figure 3: Summary of machine learning 

approaches utilized to predict molecular 

properties 
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3. Conformational search and 

identification of the most stable 

conformer 

In most MM activities, the most stable conformation of 

the molecule under study is always used as the primary 

representative conformation due to its theoretical 

stability. Unfortunately, in some cases, the active 

conformation or the conformation that will achieve the 

most effective binding to its target may not be the most 

stable one. Hence, a representative ensemble of 

conformations should be used through most MM 

activities, especially during molecular docking 

(Balaban, 1997). While searching for the most stable 

conformation for a small molecule, the previously 

discussed steps in structure preparation, including the 

energy minimization, must be fulfilled. The net result by 

the end of energy minimization is a specific 

conformation to be displayed as the one of lowest 

potential energy. However, unfortunately, it is not the 

actual most stable conformation. 

The energy minimization software can only vary bond 

angles and lengths to decrease potential energy to a 

point beyond which these changes have no significant 

effect on reducing the potential energy. Thus, the MM 

software will eventually choose a lower energy 

conformation but closest to the initial conformation. 

Any changes in bond angles or lengths beyond that local 

energy minimum conformation require an elevation in 

the system's energy, which is not a part of the MM 

software programming. The most stable conformation 

can be beyond that local energy minimum conformation 

chosen by the energy minimization MM software but 

require some additional energy to cross the energy 

barrier. Hence, specific algorisms were designed to 

cross that energy barrier by increasing the strain energy 

of the local energy minimum conformer until it 

reaches the global minimum of the potential energy 

Figure 4, and there will be the most stable 

conformation. Several methods are available for 

conducting conformational searches. Low mode 

MD, Monte-Carlo (MC) simulations, Metropolis, 

and stepwise bond rotation, are the most common 

methods. 

 

Figure 4: Energy changes during conformational 

search showing both local and global energy 

minima 

Low mode MD, where heating is offered to the 

molecule, provides the energy required to overcome 

the energy barrier to undergo bond stretching, which 

was not possible during energy minimization. The 

low mode vibrational MD generates its 

conformations by operating MD simulation for 1 Ps 

periods followed by energy minimization (Labute, 

2010). This mode is used in significant, 

disconnected, and macro-cyclic systems where 

stepwise bond rotation fails to operate. However, it 

can be used efficiently to generate conformations of 

small molecules. This method provides realistic 

results which come from the way it works. In this 

mode, random kinetic energy is provided to the 

system, causing more realistic and rapid 

conformational torsions.  

For example, n-butane was sketched and energy 
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minimized, and after energy minimization, the 

conformation obtained was as shown in Figure 5a. 

Then, a low mode MD algorism was used to 

regenerate conformations which eventually gave 

two main conformations, as seen in Figure 5b. The 

gauche conformation had an energy value of (-

4.289 Kcal/mol), and a dihedral angle of 65.3 ˚A 

Figure 5c. On the other hand, the staggered anti-

conformation had an energy of (-5.070 Kcal/mol) 

and a dihedral angle of 180 ˚A showing itself as the 

most stable conformation Figure 5d.  

(a) (b) 

 

 

(c) 

 
(d) 

 
 

Figure 5: Conformational search by MOE. (a) n-

butane conformation obtained after energy 

minimization showing dihedral angel; (b) 

Conformational database generated by low 

mode MD arranged by their energy; (c) n-

butane gauche conformation obtained by low 

mode MD showing the dihedral angel; (d) n-

butane staggered conformation obtained by low 

mode MD showing the dihedral angel. 

Comparing the dihedral angles of the local 

minimum conformer resulting from the energy 

minimization step (176.9˚A) and that resulting 

from the MD simulation in low mode (180˚A) 

proves that energy minimization cannot predict 

the most stable conformation. 

Stepwise bond rotation mode; is also called the 

systematic search because this mode uses a more 

systematic process to find more conformations. 

Unlike low mode MD, this method rotates every 

bond in the molecule; all bonds are candidates for 

rotations except ring and terminal bonds, by a 

constant magnitude till a new conformation is 

generated each time and without conducting energy 

minimization after each step. The main aim of this 

method is to discover all possible conformations for 

a molecule regardless of its energetic state (Duhé, 

2014). A serious problem facing this mode is the 

combinatorial explosions (CE). CE is a term used to 

describe the massive number of possible 

conformations that can be generated from the 

systematic approach. This approach can yield a 

considerable number of conformations because 

every bond is rotated individually, which means the 

number of conformations will increase exponentially 

with the size of the molecule, making this approach 

only suitable for small linear and continuous 

systems. 

Lately, a new approach based on principal 

component analysis (PCA) associated with quantum 

mechanical calculations have decreased the system's 

dimensionality, which provided a solution to the 

limited applications of the systematic method. This 

chemometric approach was applied successfully for 

several drugs such as lansoprazole, pantoprazole, and  
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omeprazole. The relation between molecular size (the 

number of freely rotatable bonds) and the generated 

conformations showed a quadratic growth behavior 

hindering the combinatorial explosions in the traditional 

approach (Bruni, Leite and Ferreira, 2002). 

Monte Carlo (MC) and Metropolis methods, unlike 

MD, are biased towards the more stable conformations 

by spending most of the analysis time on these. MD 

works by generating random conformations via shifting 

atoms in space. At the same time, MC functions by 

executing random bond rotations in the molecule 

(Patrick, 2013). In MD, the same time of analysis is 

spent equally for all random conformations, while in 

MC, after generating each confirmation, it is energy 

minimized, and its steric energy is compared with each 

other. The algorism chooses one of the lowest steric 

energy to complete further random bond rotations and 

generates lower energy conformations until reaching the 

global minimum conformation (Paquet and Viktor, 

2015). Metropolis method relies on MC algorithm; 

however, it uses lower temperature in each successive 

cycle, which increases the probability of hitting the 

global minimum. This approach of the Metropolis 

method tends to generate conformations with a specific 

or common conformational space (Landau, 2003).  

In the following sections, we will discuss some utilized 

MM activities such as molecular docking and MD 

simulation, which gained significant attention from 

researchers in pharmaceutical analysis and advanced 

formulations. 

4. Molecular docking 

This simulation aims to study the fitting and binding 

forces of an ensemble of different ligand molecules to 

functional groups inside the binding site in its target 

Figure 6. It is defined as a simulation of fitting the ligand 

within a cavity of its target macromolecule (protein 

pockets, DNA, RNA loops, imprinted polymeric 

network, cyclodextrin, or calix cavity). Also, docking 

can predict the ligand macromolecule complex 

structure using a computational approach. 

 

Figure 6:  Fitting of amlodipine into β-

cyclodextrin target pocket to form an inclusion 

complex. 

4.1. Binding site mining 

Before starting docking, there must be a way for 

operating software to recognize binding sites on the 

target. Different algorithms have been developed for 

such tasks, and they can be summarized according to 

the technique they used to identify sites on a target. 

The literature found three main methods: sequence-

based, geometric, or energy-based methods. The 

sequence-based method depends on the concept of 

multiple sequence alignment that superimposes 

different proteins to discover conserved sequences 

involved in various binding ligands. This technique 

is based on the idea that some arrangements involved 

in binding are not varied during the evolution of 

other proteins in the same family. For example, in the 

g protein-coupled receptor family, regardless of the 

variation in receptor type, there are still some 

structurally reserved sequences Figure 7a. Thus,   
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there can be similarities in these sequences at different 

proteins due to their essential roles in binding. 

Geometric-based methods assume that a protein is 

composed of pockets or clefts. A cleft detection 

algorithm called pocket uses the 3D lattice model for a 

protein and assigns dots representing either a protein or 

a solvent. The pocket algorism identifies the binding site 

as a solvent dot surrounded by protein dots. Other 

developed algorisms used another approach that applied 

spheres between all atoms so that no two atoms are 

contained in a sphere. The clustered spheres that occupy 

the most significant volume represent a possible pocket 

or binding site Figure 7b. The energy-based approach 

depends on the energetic properties of the site rather  

than surface topology as in geometric approaches. 

The algorithm applies several functional probes to 

simulate different atoms and residues in most 

pharmaceutical and biological compounds. The 

calculated data can be used as a mapping guide for 

possible interactions with all potential binding sites 

in the target. Q-site finder (Laurie and Jackson, 2005) 

is a software used to perform binding site molecular 

interaction mapping based on Grid forcefield 

protocol (Carosati, Sciabola and Cruciani, 2004). 

Software (CH3) probes are used to map molecular 

interactions and then perform clustering analysis to 

predict positions of binding based on the highest 

interaction energy calculated from (CH3) probes. 

 

 

 

(a) (b) 

  

Figure 7: Diagram for how MM software identifies macromolecules. (a) Diagrammatic structure of G-protein 

coupled receptors super family showing conserved motifs as an example to illustrate how MM software identify 

possible binding sites; (b) Molecular 3-D surface structure of a DNA sequence 3-ccgatagatacca-5 applying 

dummy spheres to signify vacant spaces identified as possible binding sites on the DNA molecule. 
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4.2. Sampling approach in molecular docking  

Docking is a two-step process that begins with a 

sampling of different conformations of each ligand 

then each conformation (pose) is positioned in the 

predefined binding site. The final step is applying a 

scoring function that arranges all the generated poses 

according to their favorability to the binding site. In 

addition, docking can be categorized according to the 

degree of flexibility in the utilized sampling algorism 

into rigid, semi-flexible, and flexible.  

Rigid docking is a model in which the algorism 

considers both the ligand and the target as rigid 

entities. Only axial rotations are allowed; therefore, 

the ligand fits the target in a lock-key like the model. 

Geometrical and chemical algorithms are used to fit 

ligands, and different ligands are scored based on 

steric fit and functional groups similarity to the 

binding site. Ligand flexibility can be enhanced in 

rigid docking by supplying a conformational 

database for the ligand instead of the ligand alone. 

This approach forces the algorism to test all the 

supplied conformations for fitting within the binding 

site. While in the semi-flexible and flexible 

approaches, a degree of flexibility in the ligand only 

or both of the ligand and its target, respectively, is 

offered to increase the ligand's conformational space 

or the macromolecular target in order to predict the 

most accurate approximation of the ligand 

macromolecule complex. The flexibility of both 

ligand and target is essential to mimic the induced fit 

nature of some macromolecular targets where the 

ligands induce some conformational changes upon 

approaching the binding site. Much computational 

time and effort will be consumed to accomplish 

higher degrees of flexibility. According to the aim 

and nature of binding sites, a compromise between 

 accuracy and computational time is achieved so that a 

semi-flexible approach can be enough in some cases, 

and others may require total flexibility. In semi-flexible 

docking, many approaches are used to ensure flexibility 

of the ligand while holding the target rigid. A 

systematic approach, which uses an exhaustive 

searching technique, discovers all possible poses 

resulting from alternating every rotatable bond in a 

combinatorial systemic manner. To avoid 

combinatorial explosions, several constraints are set to 

limit the acceptance of search iterations. A 

fragmentation-based approach is used to offer stability 

in the ligand molecules by fragmentation of the 

molecule in positions of rotatable bonds, then a rigid 

docking of these fragments is implemented. Then 

finally, linking of the fragments is achieved, which 

provides partial flexibility of the docked ligands; FlexX 

(Moustakas et al., 2006; Pagadala, Syed and 

Tuszynski, 2017) is an example of sampling algorism 

based on fragmentation. Another approach based on 

fragmentation is the incremental construction where 

the central fragment of the molecule is docked then the 

rest of the fragments are added incrementally.  

A stochastic technique is another sampling approach 

that searches ligand conformations in binding sites by 

varying the system degrees of freedom in a random 

manner rather than systematic, which saves time and 

computational efforts. The main disadvantage of this 

approach is the decreased search's conformational 

space, which may lead to missing the actual binder. 

This drawback can be compromised by increasing the 

system searching iterations. The most common 

techniques in the stochastic method are the Mote Carlo 

(MC) method and the genetic algorism (GA) method. 

MC method uses the metropolis method in offering 

limiting parameters (energy constrains) during            
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sampling of conformations so that the random 

changes in the ligand must end up with favorable 

changes in its energy. Autodock Vina is an example 

of sampling algorisms using the MC method (Tang 

et al., 2022). GA is considered an evolutionary 

conformational search method where the idea of 

biological evolution is inspired. Each conformation 

(pose) is regarded as a result of changes in several 

degrees of freedom in the system. Consequently, a 

single conformation may be imagined as a whole 

chromosome that is further divided into several 

genes holding several degrees of freedom that 

comprise a specific conformation. GA is a method 

that enables operations as mutations and crossovers 

that occur naturally between chromosomes to 

generate new and different conformational spaces. 

These approaches suffer from the inability to reach 

the actual experimental binding conditions due to the 

rigidity of the target binding site.  

Several methods are used to perform flexible 

simulations. One example is the MD simulation 

which can test the most available degrees of freedom 

in the ligand–macromolecule complex system. The 

main disadvantage of using MD in flexible docking 

is the inadequacy of its sampling. In MD, some 

energy barriers cannot be passed, resulting in 

discovering only a narrower conformational space of 

both the target and the ligand. Furthermore, MD 

consumes appreciable computational time and effort 

in analysis, making it a strenuous technique in 

screening several ligands simultaneously. On the 

other hand, flexible docking approaches provide total 

flexibility of both the ligand and target 

macromolecules to achieve induced conformational 

changes in the binding site upon positioning of the 

ligand. 

Soft docking is the first and most straightforward 

approach to provide overall flexibility as applied in 

Gold software (Jones et al., 1997). It functions by 

decreasing or adjusting the Van der Waal repulsion 

energy in the utilized force field parameters between 

atoms in the system to allow closer movements of both 

ligand and target atoms (minor clashes) inside the 

binding site (Sierra et al., 2011). This approach has 

advantages of simplicity and decreasing computational 

time but lacks adequate flexibility. 

Another approach called target ensembles is 

functioning by using different conformations of the 

target itself, then each ligand is docked separately into 

each target confirmation, afterward the results are 

merged to give a complete picture; Dock and FlexE 

(Claußen et al., 2001; Kim, Park and Chong, 2007) are 

flexible docking software that operates by target 

ensembles concept. 

4.3. Scoring functions for docking: categories 

and advances 

The sole of the docking procedure is the scoring of 

generated poses to identify binders from decoys 

quickly. Several scoring functions are used to arrange 

the different ligand poses or ligands according to their 

favorability to bind to their targets. The major 

categories of the scoring functions are forcefield-based, 

empirical, and knowledge-based. The force field-based 

functions, from nomenclature, use classical force field 

parameters to calculate the binding energy of each 

generated pose based on the sum of all non-bonded 

interactions as Van der Waal forces and electrostatic 

interactions. Then, the generated poses are arranged 

according to their binding energies with the target. This 

kind of scoring function suffers from slowness in their 

computations which can be handled by applying cut-off  
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distances for each type of non-bonded interaction 

(Salmaso and Moro, 2018). This approach lacks 

accuracy due to the inability to involve the long-

range non-bonded interactions. Their calculated 

values of binding energies are far from the actual 

experimental values; thus, they can only be used as a 

guide to arrange ligand poses in their binding site. 

Empirical scoring functions use simple energy terms 

to decompose the binding energy into ionic critical 

forces, hydrogen bonding, hydrophobic bonding, and 

binding entropy. Each term is multiplied by a 

coefficient and compiled to obtain the total binding 

energy value. The coefficients are determined from 

regression analysis performed on a ligand-

macromolecular target complex test set, which had 

previously determined affinities (experimentally). 

This approach lacks accuracy due to the differences 

between different software, which may deal with 

each term differently, and due to differences in the 

number of terms involved in various software 

(Guedes, Pereira and Dardenne, 2018). LUDI is an 

example of software that uses empirical scoring 

functions in calculating binding energies (Böhm, 

1992). A knowledge-based scoring function depends 

on databases of ligand-target complexes from which 

statistical analysis is performed to discover the 

frequency of each type of interaction. The most 

frequent interactions mean they are the most 

favorable. The ligand-target atom pairs contacts are 

then converted into energy components, summed, 

and used to indicate the overall affinity. Gold/ASP 

(Jones et al., 1997; Mooij and Verdonk, 2005) is an 

example of docking software that applies the 

knowledge-based scoring functions. This approach is 

simple and suitable for extensive computations as in 

screening applications.  

A particular type of scoring technique is called 

consensus scoring. This technique depends on the 

collaboration between various scoring functions to 

increase the accuracy of hitting the bound pose that 

represents the actual conformation of the ligand-target 

complex and increases the chance to avoid decoys 

(Palacio-Rodríguez et al., 2019; Vieira, Magalhaes and 

Sousa, 2019). 

4.4. Ligand binding affinity calculations: 

compromising accuracy and speed 

Experimental methods such as x-ray diffraction, 

nuclear magnetic resonance (NMR), cryo-electron 

microscopy (Billeter, 1992; Fernandez-Leiro and 

Scheres, 2016), and isothermal titration calorimetry 

(Duff, Grubbs and Howell, 2011) are the most accurate 

to determine binding affinity. However, unfortunately, 

they are not suitable for virtual screening activities, 

which require faster techniques to reduce handling 

time. Computational methods based on molecular 

docking and scoring function achieved the compromise 

between accuracy and speed of determination. The 

accuracy of predicting the ligand affinity using the 

current scoring functions is questionable and maybe not 

be close enough to the real environment. One reason 

behind the lack of accuracy of earlier scoring functions 

is missing the ligand solvation effect, which is a factor 

that was very difficult to predict or to compensate using 

current scoring functions. This led to evolution of the 

physical-based scoring functions, which can expect 

solvation and binding entropy of ligand.  

The most common and successful physical-based 

scoring functions are the molecular mechanics 

combined Generalized Born and solvent accessible 

surface area (MM/GBSA) and molecular mechanics-

based Poison-Boltzman coupled with solvent              
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accessible surface area  (MM/PBSA) (Genheden and 

Ryde, 2015). 

Determining the binding affinity of the ligand is 

tricky as it should consider several complex 

interactions between the ligand and its surroundings 

in the system, including the solvent. Additionally, 

some thermodynamic parameters should be 

considered as the changes in the entropy of the ligand 

due to its binding as the binding decreases the degree 

of flexibility of the ligand. All these considerations 

are essential for the accurate determination of ligand-

target binding affinity. The early discussed scoring 

functions failed to compensate for such complex 

interactions of the ligand with its system 

surroundings; accordingly, they failed to determine 

the binding affinity accurately. Both MM/GBSA and 

MM/PBSA could give accurate estimates about 

binding affinity and be fast enough to be used in 

virtual screening research activities. 

  

5. MD simulation: theory and 

applications 

MD is the study of the system's flexibility by 

applying the molecular mechanics' equations 

(Newton’s equation of motion) to move each atom in 

the system in a time window of femtosecond (fs = 10-

5 sec). The simulation is run in a time step manner 

where each atom in the system is allowed to move 

freely in a time frame range of (1-2) fs (Patrick, 

2013). Using the fs time frame is essential because 

1fs is less than the time required for a bond stretching 

vibrational movements in a molecule. If a higher 

time frame is allowed, two atoms may occupy the 

same position creating clashes in the system. After 

each time step (1-2 fs), the position and velocity of  

each atom is recorded, and the forces acting on each 

atom are calculated based on force field stored data. 

The system is forced to move forward in a time steps 

manner. Each movement for each atom is recorded in a 

trajectory describing all degrees of design flexibility. 

A single simulation may last for several Femto, Nano, 

or Microseconds according to the aim of the simulation 

and the type of molecules involved in the system. The 

more complex the chemical system under 

investigation, the slower the movement of molecules 

will be, and a longer simulation time is needed (ns to 

µs) (Hansson, Oostenbrink and Van Gunsteren, 2002). 

Recent hardware advancements enabled MD 

simulations for more extended periods to simulate 

actions that were impossible to simulate before, for 

example, simulating the folding process of some 

protein fragments. Graphical processing unit (GPUs) 

developments made it easier to perform longer MD 

simulations due to their rapid performance than the 

regular central processing units (CPUs). GPUs use a 

different coding system that takes advantage of the 

parallel computations (Rovigatti et al., 2015), enabling 

the MD algorithms to run faster than usual CPUs. 

Modern computer workstations contain CPU and GPU, 

which operate simultaneously, but GPUs will have the 

upper hand when it comes to simulations (Hospital et 

al., 2015). 

 To illustrate the different ways both CPU and GPU 

functions, imagine a complex mathematical problem to 

be solved was admitted to a group of non-experienced 

students (GPU) and also to an experienced 

mathematician (CPU). Then, the predicted result is that 

the experienced mathematician will be able to solve the 

problem efficiently regardless of the time consumed; 

on the other hand, the student group may fail to solve 

the problem. Consequently, CPUs are more efficient in 
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handling complex computations but may suffer from 

time lags. Another example is when clusters of 

simple calculations are admitted to the last two 

groups. The student group will show upper 

supremacy compared to the mathematician alone due 

to their collaborative efforts. Accordingly, they 

succeed in reaching the same results quickly, which 

is the same concept GPU uses to function in parallel 

form Figure 8. 
 

 

Figure 8: The major differences between GPU 

and CPU computing. 

 

Applications of MD simulations are extensive and 

range from assessing the flexibility of the chemical 

system to illustrating the favorability of interaction 

between small molecules that do not have any 

defined binding site or pockets; hence, molecular 

docking is not applicable (Tian, 2008). MD can also 

be used to refine the docking scores to examine the 

stability of the highly ranked poses to detect any 

decoys (Guterres and Im, 2020). The poses of highest 

scores are subjected to MD simulation to further 

discover the target molecules for different binding 

sites which were not tested during docking, resulting 

in refining the binding modes of the subjected poses. 

In addition, MD trajectories can be considered as a 

conformational database for ligands or targets of 

polycyclic nature where conventional                               

conformational search approaches failed to discover 

their entire conformational space (Jørgensen and 

Christensen, 1995). 

Before starting a simulation, one must optimize the 

chemical system under investigation by correcting any 

defects in the crystal structures, such as missing 

hydrogen atoms, because x-ray diffraction does not 

resolve hydrogen atoms due to their tiny sizes. Before 

engaging the simulation, energy minimization, 

assigning the appropriate force field, protonation state 

(pH) adjustment, solvation, salt ions, and applying 

potential charges are adjusted. The selection of the type 

of motion equation is also an important parameter. 

Several motion equations are available to calculate the 

system's velocity, position, and forces; the Nose-

Poincare Andersen (NPA) extension to the 

Hamiltonian equation is considered the most accurate 

and sensitive (Sturgeon and Laird, 2000).  

Analyzing the MD trajectories is extremely complex 

due to the massive number of variables measured for 

each atom at each time step in the system. The 

positional distance-based methods to assess and 

analyze computational models are the most popular and 

straightforward to perform. Root-mean square 

deviation (RMSD) is one of the global measures for the 

conformational stability of the ligand-target complex, 

and it examines the changes in the dynamics of the 

natively un-bound macromolecular target. RMSD 

versus time is the most common indicator for assessing 

the ligand-target complex stability. The ideal situation 

across the simulation is some fluctuations in RMSD 

that occur due to changes in the ligand and target 

conformations, and by comparing the RMSD plots of 

the bound (in the complex) and unbound target, it 

shows the stability indices of the formed complex 

(Abdelrheem et al., 2020). The radius of gyration (Rg) 
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is another positional distance-based parameter that 

measures the distribution of the atoms of a 

macromolecular target around its axis (Lobanov, 

Bogatyreva and Galzitskaya, 2008; Sneha and Priya 

Doss, 2016). Rg versus time is another indicator for 

the compactness of the target macromolecule. 

Through the simulation, the fluctuation pattern in the 

Rg for both the bound and unbound target should be 

close to each other to guarantee the stability of the 

ligand-target complex (Wani et al., 2021). Another 

interesting way to interpret the molecular 

interactions throughout the simulation is to 

investigate hydrogen bond formations through time, 

representing the frequency of hydrogen bonding 

between different molecules in the system. The most 

critical achievement gained from the information 

extracted from the MD simulation is estimating the 

stability of a ligand-target complex in its native 

environment (solvated system). 

6. Privilege of using molecular 

modelling approaches within 

electrochemical sensors 

All the previously discussed approaches have gained 

attention towards application in the optimization and 

development of the electrochemical and bio sensing. 

Molecular docking and dynamics simulations are 

pharmaceutical analysts' most efficient MM 

activities. A publication survey was implemented to 

investigate the publication efforts in pharmaceutical 

analysis, molecular simulations, and applications of 

MM and simulations in analysis Figure 9 in 2015 to 

2023 based on Scopus database. It was evident from 

the presented data that despite the thriving research 

activities in the fields of molecular simulations and  

pharmaceutical research, there was a modest research 

activity regarding the applications of molecular 

simulations in pharmaceutical analysis, which urged us 

to present the current work to point to the importance 

of applying the knowledge of MM in different 

pharmaceutical analysis activities. 

 

Figure 9: A publication survey investigating the 

publication efforts in pharmaceutical analysis, 

molecular simulations, and applications of MM and 

simulations in analysis from 2015 to 2023 based on 

Scopus database, 

A significant challenge facing any pharmaceutical 

analytical technique is achieving higher degrees of 

selectivity and sensitivity towards the desired 

analyte(s). Electrochemical sensors tend to provide a 

sensitive and selective technique for quantitation of 

different analytes. These techniques gained attention 

due to their dependence on electron flow as a signal 

carrier which represent cleanest analytical platform 

ever encountered also, due to their suitability for 

miniaturization, to decrease the required sample 

volume to few microliters, they led to a decrement in 

their waste. Besides, low fabrication cost and less time 

for sample analysis made these techniques the 

favorable choice for real time analysis (AlRabiah et al., 

2018).  
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Selectivity of the electrochemical sensors is an 

important parameter that must be built into its design 

during the development phase. Selectivity can be 

achieved by incorporating different types of 

macromolecules to the electrode sensing part. For 

example; ionophores are added to the sensing part of 

the sensor to act by enhancing the sensor's selectivity 

towards the targeted analyte (Bakker, 2004; 

Amemiya, 2007). Different arrays of ionophores 

were reported (Bakker, 2004) as a series of 

macromolecular compounds of both 

hydrophilic/lipophilic characters as; (α, β, and γ) – 

cyclodextrins, Calix [4, 6, and 8] arenes, 

functionalized cyclodextrins (methyl and 

hydroxypropyl β-CDs), and others. 

Molecular docking is extensively used to screen the 

selectivity of these ionophores towards the target 

analyte. The aim of performing molecular docking 

can be variable. The analyst may use it for choosing 

the most selective and suitable ionophore for the 

analyte before conducting any experimental work so 

decreasing the time of experimenting different 

sensor designs (Almalik et al., 2018) . Also, one may 

perform molecular docking to interpret the 

experimental results obtained from various sensor 

designs to compare their performance in the light of 

binding energies of the analyte poses within the 

pocket of each ionophore (Alrabiah, Homoda, et al., 

2019).  

Moreover, molecular docking can be performed to 

confirm selectivity of the chosen ionophore in the 

presence of other interfering compounds as co-

formulated drugs or organic compounds in a dosage 

form acting as excipients. 

Another interesting example for incorporating 

functional macromolecules is the molecularly 

imprinted polymers formed of a polymeric network of 

monomers cross-linked together in a specific 

arrangement; thus, several gaps in the polymeric 

network are left behind. These gaps permit selective 

identification for a particular template molecular 

geometry (Sajini and Mathew, 2021). 

This design is only possible upon optimizing two 

essential factors; type of progenic solvent in which 

polymerization reaction takes place and monomer 

structure capable of interacting with the template 

molecule. MD and QM calculations were utilized 

effectively to screen the suitability of a wide variety of 

monomers to test their binding to the template molecule 

(analyte) in different solvents (Elsonbaty and Attala, 

2021; Liu et al., 2021). 

Researches have learnt that optimizing the design of an 

electrochemical sensor became an easy task in the light 

of MMA.  For example; the sensitivity of a solid 

contact electrochemical sensor has been always 

depending on the transducer used in its design(Heli et 

al., 2010) . Recently, several works reported the use of 

different nano metal oxide composites to decorate 

graphite or graphene based sensors (Oghli and 

Soleymanpour, 2020) . Several attempts were made to 

explain the interaction between these decorated sensors 

and their analytes on the quantum and molecular levels 

using different MM approaches. 

Researchers could determine the effect of a nano 

material added to the sensor composition on the sensor 

ability to interact with the analyte. So, they became able 

to investigate various arrays of different sensor designs 

and compare their performance. Biosensors had also a  
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great attention to be simulated using computational 

methods. Since their sensing parts are mainly 

composed of a biological material which interacts 

more selectively to its target, their selectivity can be 

assessed also using techniques as molecular docking 

and dynamic simulations (Elsonbaty, Abdel-Raoof, 

et al., 2021). 

7. Practical insights for docking and 

dynamic simulations of small 

molecules 

The Major challenge facing running docking 

simulations for relatively small organic molecules 

and some metals is selecting the appropriate force 

field that parameterizes all of the atom types in the 

system. This challenge has been tackled by engaging 

the appropriate force field that parameterizes almost 

all tiny organic molecules and some metal atoms 

such as MMFF94X, Amber10: EHT, and universal 

force field (UFF) (González, 2011; Becker et al., 

2013; Coupry, Addicoat and Heine, 2016). 

Another problem is the inability of some MM 

software to identify some interacting molecules as a 

target or receptor due to its non-protein structural 

nature and limited geometrical characteristics. Most 

of the targets used in simulating events in traditional 

electrochemical sensors are organic molecules rather 

than proteins or nucleic acids in biosensors, so the 

software system may not identify the target molecule 

as the receptor. Due to this drawback, molecular 

docking is not feasible in most cases, and to study the 

nature of interactions between these molecules, MD 

is the only way to do so. as polymeric membrane,        

Also, solvation must be considered to simulate these 

interactions in the chemical system due to a solvent's 

critical effects on the interaction between molecules, as 

discussed earlier. Because these simulations do not 

represent a biological system, many solvents beyond 

water are available to simulate different chemical 

systems in vitro as chloroform, dimethyl sulfoxide 

(DMSO), Methanol, ethanol, and (Hezaveh et al., 

2012; Zhang and Lazim, 2017). 

It is noticed that the relatively small organic molecular 

systems are more straightforward than their biological 

counterparts, so these systems use minimum 

computational efforts. MD simulations for these 

systems are simpler and require short times in the ps 

frame, which is enough to study events as 

conformational changes and interactions. 

MD simulations are the most useful to study such small 

molecules interactions, and there are three scenarios for 

the use of MD. First, we can use MD to confirm the 

obtained experimental work results. Second, we can 

start with MD simulation and use their results to 

determine a specific experimental pathway. In the last 

scenario, we may use MD simulations besides docking 

study to confirm the validity of the selected poses. 

Then, experimental work is performed to verify the 

computational speculations. 

8. Applications in pharmaceutical 

analysis 

Several electrochemical sensors and biosensors were 

reported using different computational approaches to 

assist their design and performance optimization. 

Electrochemical sensors are composed of a transducer; 



86 

 
responsible for signal transduction and the 

sensing part as polymeric membrane, graphite or 

graphene oxide; accountable for interactions 

with the external environment and analyte 

quantitation. 

To study the selectivity of the ionophore 

macromolecule towards an analyte, a molecular 

docking study can be performed to compare the 

affinity of the analyte to each of the ionophores. 

Based on the data extracted from the docking 

study (docking poses) and binding energies 

between the analyte (guest) and the ionophore 

(host), the most stable complex is identified, and 

the ionophore best candidate can be chosen to 

achieve the optimal sensor selectivity. Also, the 

interfering effect of different molecules 

accompanying the analyte in its matrix can be 

studied by docking these possible interfering 

molecules against the sensor ionophore 

macromolecule. Table 2 epitomizes the most 

recently reported works that implement the 

computational activities in designing their 

electrochemical sensors utilized for a broad 

spectrum of applications. 

In another context, the design of molecularly 

imprinted polymers for the selective solid-phase 

extraction of pharmaceutical molecules can be 

optimized by the Insilco methods besides or 

instead of the time-consuming in-vitro 

approaches. MD simulations were reported as 

the most beneficial tool for simulating the 

critical steps in designing the polymer as; the  

selection of the suitable monomer and pyrogenic 

solvent (Olsson, Wiklander and Nicholls, 2021). 

MD simulation is a time-saving approach with 

minimal computational cost. MD is suitable for 

screening purposes to select the most favorable 

candidate monomer(s) for the template molecule 

in the presence of different organic solvents. 

Analysis of MD simulation data gives speculations 

about the stability of the formed interactions 

between the monomer and the template molecules; 

moreover, they assist the selection of the best 

solvent which enforces these interactions. Table 3 

displays some of the recently reported research 

efforts that apply different computational 

approaches to optimize selective imprinted 

polymers for various pharmaceutical compounds. 

Also, QM calculations based on DFT or semi-

empirical methods were reported to optimize the 

structural geometries of monomer-template 

complexes. These QM approaches were found 

helpful in investigating the effect of different 

solvents on the electronic energies of the 

monomer-template system.   
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Table 2: summarizes the most recently reported works that implement the computational activities in designing their electrochemical sensors utilized for 

a broad spectrum of applications 

Transducer 
Ionophore 

(if exists) 

Analytical 

technique 
Computational approach Software Application Ref. 

GOa - Potentiometry 

Molecular docking was 

implemented to prove that GO 

binds to the enzyme at a different 

pocket rather than the one for D-

glucose 

AutoDock 

Vina 

Molecular interaction analysis for the 

immobilization of glucose oxidase 

enzyme on GO surface to design a 

glucose biosensor system 

(Sumaryada et 

al., 2019) 

Ag/AgCl 

internal 

electrode 

α, β and γ-CD 

ionophores 

 

Potentiometry 

studying the interaction modes of 

the drug ion to ionophore by 

molecular docking 

MOE 2010 

Molecular docking of different 

ionophores for the determination of  

solifenacin in dosage form 

(Eissa et al., 

2020) 

Ag/AgCl 

internal 

electrode 

β-CD, γ-CD and 

4-tert-butyl calix 

[8] arene 

Potentiometry 

Molecular docking was 

implemented to compare the 

selectivity of each ionophore 

towards  

trazodone 

MOE 2015 

Design and optimization of a PVC based 

potentiometric sensor for  

trazodone quantitation 

(Alrabiah, 

Aljohar, et al., 

2019) 

Ag/AgCl 

internal 

electrode 

α, β and γ-CD 

ionophores 

 

Potentiometry 

Investigating selectivity of 

different ionophores towards the 

drug ion preliminary to optimizing 

the most suitable candidate by 

experimental design 

MOE 2014 

Experimental design aided by molecular 

docking for design and optimization of 

benazepril PVC-base sensor 

(Elsonbaty 

and Attala, 

2021) 

Graphite/ 

epoxy resin 

composite 

cucurbit[6]uril 

hydrate 
Potentiometry 

Molecular docking simulation was 

implemented to illustrate the 

interaction mode of the host 

molecule into its guest 

AutoDock 

Vina, PyMol 1.3 

and 

HyperChem 7.5 

Selective quantitation of atropine in 

hospital settings to assess its shelf life 

while decreasing its flushing rates and 

remedy cost 

(Ferreira et 

al., 2021) 

Ag/AgCl 

internal 

electrode 

α, β and γ-CD 

ionophores 

 

Potentiometry 

Molecular docking and dynamic 

simulation to investigate binding 

modes of the drug target to each of 

the ionophores 

MOE 2015 

Design of cyclodextrin potentiometric 

sensors for the selective quantitation of 

procainamide in dosage form 

(Alrabiah, 

Homoda, et 

al., 2019) 
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Table 2; Cont. 

Unmodified 

GCE 
- 

Cyclic  

voltammetry 

Molecular docking was utilized 

for the identification of drug 

binding modes to DNA, RNA and 

BSA 

AutoDock v 4.2.6 

Studying the interaction of both 

ciprofloxacin and sparfloxacin with 

different biological molecules using 

various analytical techniques 

(Rajendiran 

and Suresh, 

2018) 

PVC-coated 

wire of 

platinumor 

glassy carbon 

Undecyl 

calix[4] 

resorcinarene, 

tert butyl  

calix[6]arene 

hexaethyl ester 

and 

 calix[6]arene 

hexaethyl ester 

Potentiometry 

Molecular docking was utilized 

for comparing selectivity of each 

ionophre twowards each drug ion 

HyperChem v.6.0 

Designing potentiometric sensors for the 

determination of some organic acids, 

beta blockers and other organic 

ionizable compounds 

(Nagels, 

Bazylak and 

Zielinska, 

2003) 

Ag/AgCl 

internal 

electrode 

β-CD, and  

calix [4], [6], 

and [8]arene 

Potentiometry 

Molecular docking was conducted 

to test the fitting of the guest 

molecule into each different 

ionophore host pocket 

MOE 2015 

Determination of levamisole in different 

livestock products using a PVC 

membrane based sensor 

(Draz, Naguib 

and Saad, 

2021) 

Ag/AgCl 

internal 

electrode 

α, β and γ-CD 

ionophores 
Potentiometry 

Investigating binding forces  

between the guest molecule and 

each different ionophore host to 

identify the optimum sensor 

MOE 2014 

Electrochemical quantitation of 

Amprolium Hydrochloride in poultry 

products to assess food safety 

(Elsonbaty, 

Abdel-Raoof, 

et al., 2021) 

GCE/MW-

CNTb 
- 

Differential 

pulse 

voltammetry 

and UV-vis 

spectrophoto

metry 

Molecular docking was utilized to 

study the binding mode of the 

dsDNA to the 5-DDMPc 

Schrodinger 

Small-Molecule 

Drug Discovery 

Suite 

DNA based biosensor for the 

determination of the anticancer 5-

DDMP 

(Munir et al., 

2021) 

Ag/AgCl 

internal 

electrode 

α, β and γ-CD 

ionophores 
Potentiometry 

Molecular docking was applied to 

compare the selectivity of each 

ionophore towards  

mebeverine 

MOE 2015 

Design and fabrication of a PVC relied 

potentiometric electrodes for  

Mebeverine analysis 

(Abdel-Raoof 

et al., 2023) 

a Graphene Oxide 

b Glassy Carbon Electrode/ Multi Walled Carbon Nanotubes 

c 5-(diethylamino)-2-((2,6-diethylphenylimino)methyl)phenol  
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Table 3: shows some of the recently reported research efforts that apply different computational 

approaches to optimize selective imprinted polymers for various compounds 

Monomer Template 
Progenic 

solvent 

Computational 

approach 
Software Ref. 

AAMa Hydrochlorothiazide THFd DFT calculations Gaussian 09 

(Barros, 

Custodio 

and Rath, 

2016) 

MAAb Levetiracetam Chloroform Ab intio (HF)  
MOE and 

Gaussian 09 

(Attallah et 

al., 2018) 

MAA 
Propranolol and 

dibenzylamine 
Acetonitrile DFT calculations Gaussian 09 

(Nagy-

Szakolczai 

et al., 2020) 

MAA Caffeine 
Acetonitrile 

and toluene 
DFT calculations Gaussian 09 

(Mehamod 

et al., 2015) 

 

HEMAc Atorvastatin 
Hydrogel 

solution 

Lamarckian 

genetic algorithm 

AutoDock Tools 

version 4.2.6 

software 

(Pereira-Da-

mota et al., 

2021) 
a Acrylamide 

b Methacrylic acid 

c 2-Hydroxyethyl methacrylate 

d Tetrahydrofuran 

 

9. Conclusion 

The applications of MM and molecular simulations 

in the field of pharmaceutical analysis motivated the 

analyst thinking to the molecular level and aided in 

the understanding of different events regarding 

molecules' behavior on the molecular and quantum 

levels. This comprehensive review provides the 

reader with the basic knowledge required to 

understand various techniques and related activities 

based on MM. In addition, the current work provides 

some pharmaceutical analysis applications that use 

different MM approaches. 
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