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 Abstract 

Myocardial fibrosis refers to a variety of quantitative and qualitative 

changes in the interstitial myocardial collagen network that occur in 

response to cardiac ischemic insults, systemic diseases, drugs, or any 

other harmful stimulus affecting the circulatory system or the heart 

itself. Myocardial fibrosis alters the architecture of the myocardium, 

facilitating the development of cardiac dysfunction, also inducing 

arrhythmias, influencing the clinical course and outcome of heart 

failure patients. Focusing on myocardial fibrosis may potentially 

improve patient care through the targeted diagnosis and treatment of 

emerging fibrotic pathways. The current review highlights the most 

important signaling pathways involved in the pathogenesis of cardiac 

fibrosis. Targeting these pathways is the key objective in introducing 

new therapeutic modalities to protect myocardium from remodeling 

and fibrosis. Present work also highlights new options currently 

being tested and used in mitigating fibrosis in heart. One of these 

options is the use of gliflozins, relatively new oral hypoglycemics, 

which show promising cardioprotective effects. Gliflozins are 

Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new drug 

class approved for treatment of diabetes, which have been shown to 

possess a favorable metabolic profile and to significantly reduce 

atherosclerotic events, hospitalization for heart failure, cardiovascular 

and total mortality, and progression of chronic kidney disease. 

Although initially considered to be only glucose-lowering agents, the 

effects of SGLT2i have expanded far beyond that, and their use is 

now being studied in the treatment of heart failure and chronic kidney 

disease, even in patients without diabetes.  

Keywords: Cardiac fibrosis; Pirfenidone; Empagliflozin; TGF-β; 

SMAD. 
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1. Introduction 

In adult mammals, the heart possesses only a 

restricted ability to regenerate, underscoring the 

significance of reparative mechanisms following 

injury. These mechanisms entail the infiltration of 

inflammatory cells, the elimination of necrotic heart 

muscle cells, and the development of granulation 

tissues rich in capillaries. Subsequently, fibrotic 

scars take the place of granulation tissues, serving 

to maintain the structural and functional integrity of 

the myocardium. Fibrosis is characterized by the 

overaccumulation of extracellular matrix (ECM) 

components, predominantly collagen fibers, in the 

interstitial spaces. It represents a crucial 

pathological response to chronic inflammation. 

(Maruyama and Imanaka-Yoshida, 2022). 

Initially, the deposition of extracellular matrix 

(ECM) proteins serves a protective role and is 

essential for wound healing and tissue regeneration. 

The ECM also plays a crucial role in maintaining 

normal physiological conditions. For example, 

interactions between cardiomyocytes and the ECM 

influence cellular behavior through cell surface 

receptors, which function as signal transmitters 

governing processes like cell proliferation, 

migration, survival, and differentiation (Sainio and 

Järveläinen, 2020). Nevertheless, when 

pathological cardiac remodeling occurs due to 

excessive and persistent tissue damage, 

accompanied by ongoing ECM deposition, it leads 

to an altered organ structure and has a profound 

impact on cardiac function (Li et al., 2018; 

Frangogiannis, 2021).   

Cardiac fibrosis is seemingly related to common 

risk factors e.g. genetic, viral, and environmental 

abnormalities (Hinderer and Schenke-Layland, 

2019), and it was also linked to major health 

problems e.g. obesity, hypertension, diabetes, and 

metabolic dysfunction (Cavalera et al., 2014). 

Heart diseases, including conditions like myocardial 

infarction (MI), cardiac hypertrophy resulting from 

pressure or volume overload, diabetic 

cardiomyopathy, and dilated cardiomyopathy 

(DCM), collectively contribute to the progression of 

cardiac fibrosis. While fibrosis holds significant 

pathophysiological relevance in the development of 

cardiovascular diseases, there remains a need for 

further research to fully understand the mechanisms 

and processes involved in cardiac fibrosis 

development at the molecular level (Krejci et al., 

2016; Frangogiannis, 2021; Imanaka-Yoshida, 

2021). 

 The prevailing approach for diagnosing cardiac 

fibrosis involves identifying and measuring the 

amount of collagen in the interstitial tissue, 

typically through an endomyocardial biopsy (Jellis 

et al., 2010). Meanwhile, the most widely used 

technique for assessing left ventricular (LV) 

volume and mass is cardiac magnetic resonance 

(CMR) imaging. Nevertheless, CMR is a costly 

method that demands expertise for both image 

acquisition and analysis (Graham-Brown et al., 

2017). To identify perfusion irregularities or 

discrepancies in metabolism and perfusion, nuclear 

imaging techniques such as single photon emission 

computed tomography (SPECT) and positron 

emission tomography (PET) have been employed. 

These methods serve specific purposes: SPECT for 

detecting perfusion defects and PET for assessing 

metabolism and perfusion mismatches (Hinderer 

and Schenke-Layland, 2019). 

In addition to imaging approaches, non-invasive 

methods for detecting fibrosis also exist, involving 

the use of biomarkers. For instance, the ratio of 

matrix metalloproteinase type 1 to tissue inhibitor 

of metalloproteinase type 1 (MMP-1/TIMP-1) or 

the measurement of the carboxy-terminal pro-

peptide of pro-collagen type I (PCIP) in the 

bloodstream are commonly utilized (Jellis et al., 

2010). Currently, all of these methods and 

techniques are in regular use. However, none of 

them satisfies all the criteria for identifying 

myocardial fibrosis comprehensively. Therefore, it 

is typically necessary to combine imaging, 

biomarker assessment, and routine histological and 

histochemical staining to fully characterize cardiac 

fibrosis. 

Numerous signaling pathways have been 

implicated in the activation of cardiac fibroblasts 

(CFs) and the progression of pathological 

remodeling. Exploring the modulation of these 

signaling pathways as potential novel therapeutic 

targets holds significant promise. These signaling 

pathways will be shortly summarized in this 

review, alongside with therapeutic modalities 

present in combating against cardiac fibrosis up to 

date. 

2. Signaling Pathways of Cardiac 

Fibrosis 

2.1. TGF-β Signaling 

Transforming growth factor-β (TGF-β) is the most 
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extensively studied agent as a fibrotic factor. This 

pleiotropic peptide exerts a wide range of effects, 

but its impact on cellular behavior varies depending 

on the specific cell type, the surrounding 

environment, and the cellular conditions. 

Importantly, TGF-β's actions are highly context-

dependent and can differ significantly based on the 

circumstances in which it operates (Zhang et al., 

2017). TGF-β facilitates various biological 

processes, such as embryonic development, tumor 

growth, cell proliferation, and apoptosis (Zinski et 

al., 2018; Batlle and Massagué, 2019; Tzavlaki 

and Moustakas, 2020).  

The TGF-β is also a central player in hypertrophic 

and fibrotic transformation of the heart, mediating 

cardiomyocyte growth, CF activation, 

inflammation, and ECM deposition (Liu et al., 

2017; Liu et al., 2019a). TGF-β includes three 

isoforms (TGF-β1, TGF-β2, and TGF-β3) in 

mammals, encoded by three different genes 

(Tzavlaki and Moustakas, 2020). Among the three 

isoforms, TGF-β1 is predominant. It is crucial in 

pathological fibrosis and is produced by various 

cells, including immune cells, endothelial cells, 

cardiomyocytes, and activated fibroblasts (Hanna 

and Frangogiannis, 2019; Nicin et al., 2022). 

TGF-β1 is initially secreted as an inactive complex 

with dormant TGF-β-binding proteins and TGF-β 

pro-peptides. This complex is sliced and activated 

during an integrin-mediated process (Robertson 

and Rifkin, 2016; Brown and Marshall, 2019).  

The TGF-β can induce signal transduction via 

primary (SMAD-dependent) and non-primary 

(SMAD-independent) pathways. In the canonical 

pathway, TGF-β1 binds to and causes 

heterodimerization of TGF-β receptor type 1 (TβRI, 

also known as activin-like kinase (ALK) 5) and type 

II (TβRII), leading to SMAD2 and SMAD3 

phosphorylation. Consequently, a complex with 

SMAD4 forms and translocates into the nucleus, 

acting as a transcriptional factor to regulate the 

expression of target genes (Chung et al., 2021). 

Intriguingly, recent reports have suggested the 

distinct roles of SMAD2 and SMAD3 in mediating 

TGF-β signaling (Aragón et al., 2019; Huang et 

al., 2019). SMAD6 and SMAD7 are inhibitory 

SMADs. They can interact with TβRI and 

competitively inhibit SMAD2 and SMAD3 (Chung 

et al., 2021). In addition to the SMAD-dependent 

canonical pathways, TGF-β1 can induce SMAD-

independent non-canonical signaling that involves 

several mitogen-activated protein kinases, including 

extracellular signal-regulated kinases (ERKs), c-Jun 

 1 (TAK1), Rho family of small GTPases, and p38 

MAPK pathways (Zhang, 2017; Frangogiannis, 

2020). 

In fibrosis regulation, TGF-β can transform 

fibroblasts into activated CFs and promote ECM 

synthesis and deposition, which involves SMAD3 

signaling (Khalil et al., 2017). TGF-β also inhibits 

ECM degradation by regulating plasminogen 

activator inhibitor (PAI)-1 and TIMP expression 

levels (Schiller et al., 2004). Additionally, non-

canonical TGF-β signaling can induce fibrosis. In 

human activated CFs, RNA-binding proteins, such 

as pumilio RNA binding family member 2 (PUM2) 

and KH domain-containing RNA binding (QKI), 

work as hub proteins of the canonical TGF-β1–

SMAD and TGF-β1–MAPK pathway, and the non-

canonical IL-11-mediated pathway, which 

regulates fibrogenic gene expression (Chothani et 

al., 2019; Finnson et al., 2020). Extensive and 

accumulating evidence highlights the significance 

of non-coding RNAs, including microRNAs, in the 

development of cardiac fibrosis (Micheletti et al., 

2017; Yousefi et al., 2020). TGF-β signaling 

pathways in cardiac fibrosis are illustrated in 

Figure 1. 

2.2. Renin-Angiotensin-Aldosterone 

System 

The renin-angiotensin-aldosterone system, in which 

Ang II is considered the most predominant isoform, 

promotes many pathophysiological functions, 

including cardiac fibrosis (Jia et al., 2018). Ang II 

can be produced either systemically or locally and 

exerts its effects through two specific receptors: 

angiotensin type 1 (AT1) and type 2 (AT2). AT1 

receptor activation is associated with various 

biological processes, including the proliferation 

and migration of cardiac CFs, CF activation, the 

synthesis of ECM proteins, and apoptosis. In 

contrast, AT2 receptors play a cardioprotective role 

and act as negative regulators of Ang II-mediated 

fibrogenic responses. They achieve this by 

inhibiting AT1 receptor actions, which leads to the 

suppression of CF proliferation and matrix 

synthesis (Paz Ocaranza et al., 2020).  

The effects of Ang II through AT1 on CF 

activation are mediated through the activation of 

p38 MAPK, protein kinase C (PKC), and ERK 

cascades (Forrester et al., 2018). Ang II also 

interacts with TGF-β signaling in cardiomyocytes 

and CFs to induce cardiac hypertrophy and fibrosis. 
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N-terminal kinases (JNKs), TGF-β-activated kinase  Various mediators regulate CF responses to Ang II  

 
Figure 1: TGF-β signaling in cardiac fibrosis (Maruyama and Imanaka-Yoshida, 2022). TGF-β1 binds 

to and causes heterodimerization of TGF-β receptor type 1 (TβRI, also known as activin-like kinase 

(ALK) 5) and the type II receptor (TβRII), leading to the phosphorylation of SMAD2/SMAD3, which 

subsequently form a complex with SMAD4 and translocate into the nucleus, acting as a transcriptional 

factor to regulate the fibrotic gene expression (e.g., αSMA, collagen I, III or TNC). SMAD6/7 are 

inhibitory SMADs to inhibit transcription of SMAD2 and SMAD3. In canonical pathways, TGF-β1 can 

also induce SMAD-independent noncanonical signaling that involves several mitogen-activated protein 

kinases, including extracellular signal-regulated kinase (Erk), c-Jun-N-terminal kinase (JNK), TGF-β-

activated kinase 1 (TAK1), Rho family of small GTPase, and p38 MAPK pathways. 

through AT receptor expression. For instance, pro-

inflammatory mediators (e.g., NF-κβ, IL-1β, IL-6, 

and TNF-α) make fibroblasts more reactive to Ang 

II by inducing AT1 synthesis (Satou et al., 2018). 

2.3. Endothelin (ET) 

Endothelin was initially characterized as a potent 

vasoconstrictor peptide. However, it is now well-

established as a multifunctional peptide with 

functions extending beyond vasoconstriction to 

encompass a range of physiological and 

pathological activities e.g. development, tumor 

growth, immune regulation, and the development of  

 
cardiac fibrosis (Wang et al., 2015; Dhaun and 

Webb, 2019). ET-1, the predominant isoform in 

humans, is thought to be secreted mainly by 

endothelial cells, but can also be produced by every 

cell type. G protein-coupled receptors (GPCRs) 

ETA and ETB are two recognized ET-1 receptors. 

Although ET-1 acts mainly through ETA to 

promote vasoconstriction, inflammation, and cell 

proliferation, the ETB receptor is considered a 

physiological antagonist. ET-1 exerts fibrogenic 

effects, acting as a downstream molecule of 

cytokines and neurohumoral mediators, thus 

linking inflammation and cardiac fibrosis (Barton  
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and Yanagisawa, 2019). 

Both Ang II and TGF-β induce ET-1 expression 

(Shi‐wen et al., 2007; Liu et al., 2019b) and ET-1 

upregulation is consistently confirmed in many 

fibrosis-associated cardiac pathologies, including 

MI, HF, and hypertensive heart disease (Barton 

and Yanagisawa, 2019). Both genetic models and 

pharmacologic inhibition studies suggest the 

fibrogenic effects of ET-1 in myocardial disease. 

Cardiac ET-1 overexpression in mice induces 

myocardial fibrosis associated with both systolic 

and diastolic dysfunction (Mueller et al., 2011).  

Endothelium-specific loss of ET-1 diminished 

fibrosis in Ang II-infused mice (Adiarto et al., 

2012). ET-1 inhibition improved cardiac fibrosis 

(Ammarguellat et al., 2001). Blocking endothelin-

1 (ET-1) signaling and its fibrotic effects may hold 

therapeutic promise. Antagonists targeting the ETA 

receptor and dual ETA/ETB receptors have been 

shown to mitigate myocardial remodeling by 

reducing collagen deposition and attenuating 

cardiac fibrosis in animal models. The results 

suggest that ET-1 blockade could be a potential 

therapeutic approach for managing cardiac fibrosis 

in HFpEF. (Valero-Munoz et al., 2016). Although 

its effectiveness in animal experiments has been 

shown, clinical trials using ETA antagonists have 

not been beneficial for patients with heart failure 

with reduced ejection fraction (HFrEF) and HFpEF 

(Barton and Yanagisawa, 2019). 

2.4. Platelet-Derived Growth Factors 

(PDGF) 

The PDGFs play various roles in embryonic 

development, tumor progression, vascular diseases, 

and fibrosis. PDGFs can form homo- or 

heterodimers and exert their effects through two 

receptor tyrosine kinases known as PDGFR-α and 

PDGFR-β. These growth factors share common 

structural features, including five extracellular 

immunoglobulin loops and a split intracellular 

tyrosine kinase domain. In fibrotic conditions, 

PDGF signaling, which can interact with TGF-β 

signaling, leads to cell proliferation characterized 

by an activated phenotype. This ultimately results in 

the excessive production and deposition of ECM, 

contributing to fibrosis (Andrae et al., 2008). 

Both PDGF-A, PDGF-C, and PDGF-D are 

implemented as potential fibrogenic PDGFs in the 

myocardium through straight actions and, in part, 

through TGF-β (Tuuminen et al., 2009). PDGF-A 

or PDGF-D overexpression can cause cardiac  

 
fibrosis due to excess fibroblast activation (Gallini 

et al., 2016). Although controversial, PDGF-B is 

also a potent fibrogenic PDGF. PDGFR-α 

activation is consistently involved in myocardial 

fibrosis. Treatment with a neutralizing antibody 

against PDGFR-α and PDGFR-β attenuated 

collagen deposition (Zymek et al., 2006).  

Furthermore, a more comprehensive inhibition of 

PDGFR through the use of the kinase inhibitor 

imatinib has been shown to reduce cardiac fibrosis 

in mouse models of myocarditis, MI, and 

isoproterenol infusion (Leipner et al., 2008; Liu et 

al., 2014; Wang et al., 2017). PDGFR-β activation 

potentially occurs through integrin β1 and small 

proline-rich repeat 3 to enhance fibroblast 

proliferation and matrix synthesis in a cardiac 

pressure overload mouse model (Saraswati et al., 

2020). PDGFs have also been shown to be 

involved in the cardiac fibrotic response in an Ang 

II-treated mouse model (Nishioka et al., 2007). 

2.5. Wnt Signaling 

The Wnt signaling pathway has diverse roles in 

many biological processes, including 

carcinogenesis, embryonic development, immune 

maintenance, and fibrosis (Tao et al., 2016; Zhang 

and Wang, 2020). Several reports have indicated 

essential roles for Wnt signaling in cardiac fibrosis 

progression, mainly through the TGF-β pathway. 

The canonical Wnt/β-catenin pathway is 

predominantly involved in cardiac fibrosis 

progression, interacting with SMAD-dependent 

canonical TGF-β signaling (Xu et al., 2017; Burgy 

and Königshoff, 2018). In the absence of Wnt 

ligands, cytosolic β-catenin is degraded by the 

destruction complex, which includes tumor 

suppressors Axin, adenomatous polyposis coli 

(APC), the serine/threonine kinases, glycogen 

synthase kinase (GSK)-3β, casein kinase (CK) 1, 

protein phosphatase 2A (PP2A), and the E3-

ubiquitin ligase β-transducin repeat-containing 

protein (β-TrCP) (Wang et al., 2021).  

In CFs from MI mice and human, phosphorylated 

GSK-3β negatively regulates TGF-β signaling by 

directly interacting with SMAD3 and through β-

catenin signaling. Moreover, GSK-3β deletion or 

inhibition in in vivo models leads to 

hyperactivation of TGF-β-SMAD3 signaling and 

cardiac fibrosis (Guo et al., 2017). Secreted Fz-

related proteins (sFRPs), which are endogenous 

modulators of Wnt signaling, have emerged as key 

regulators of the fibrotic response. sFRP1 inhibits 

Wnt ligands. sFRP1 null mice show cardiac  
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dilation with increased expression of canonical 

Wnts, β-catenin, and Wnt target genes, such as Lef1 

and Wisp1, leading to increased α-SMA expression 

and collagen production (Huang and Huang, 

2020). Non TGFβ signaling pathways are presented 

in Figure 2. 

3. Therapeutic Options for 

Management of Cardiac Fibrosis 

Currently, there are no drugs specifically approved 

for clinical use with a primary focus on anti-fibrotic 

actions in the context of cardiac fibrosis (Raziyeva 

et al., 2022). While experimental studies have 

yielded promising results, the clinical evidence 

supporting the efficacy of such drugs remains 

limited. Despite the encouraging findings in 

preclinical research, the translation of anti-fibrotic 

therapies for cardiac fibrosis into approved clinical 

treatments is an ongoing challenge. Further research 

and clinical trials are needed to establish the safety 

and effectiveness of potential anti-fibrotic therapies 

for patients with cardiac fibrosis (Morfino et al., 

2022). Different agents integrated in management 

of cardiac fibrosis are summarized as follow: 

 
3.1. RAAS Inhibitors  

It was previously mentioned that Ang II binding to 

Ang II type 1 receptors (AT1R) promotes collagen 

synthesis, and that in chronic heart disease, there is 

generally a significant activation of RAAS, which 

is directly associated with the development of 

cardiac fibrosis (Schnee, 2000). Various studies 

have shown that both angiotensin-converting 

enzyme (ACE) inhibitors and angiotensin II 

receptor blockers (ARBs) as seem in Figure 3 

significantly reduce myocardial fibrosis regardless 

of their hypotensive effect (Brilla et al., 2000; 

Díez et al., 2002; Shimada et al., 2013).  

Aldosterone, whose production is stimulated by 

Ang II, also exerts a pro-fibrotic effect in the 

myocardium by interacting with mineralocorticoid 

receptors (Brilla et al., 1994). Aldosterone receptor 

antagonists (spironolactone, canrenone, and 

eplerenone) showed significant anti-fibrotic effects 

(Mak et al., 2009; Deswal et al., 2011; Kosmala 

et al., 2011). In the RALES study (Randomized 

Aldactone Evaluation Study), conducted in patients 

with HF with reduced EF (HFrEF), spironolactone  

 
Figure 2: Non TGF-β signaling in cardiac fibrosis (Maruyama and Imanaka-Yoshida, 2022). Platelet-derived growth 

factors (PDGFs), angiotensin (Ang) II, endothelin (ET)-1, and mechanosensitive pathways mediated by integrins and ion 

channels such as transient receptor potential cation channels (TRPs) can activate fibroblasts into myofibroblasts, leading to 

excess extracellular matrix protein deposition and cardiac fibrosis. AT1, angiotensin type 1 receptor; PDGFR, PDGF 

receptor; ERK, extracellular signal regulated kinase; PI3K, phosphoinositide 3-kinase; JNK, c-JUN N-terminal kinase; 

αSMA, α-smooth muscle actin; ROCK, Rho-associated protein kinases; FAK, focal adhesion kinase. cytosolic β-catenin is 

degraded by the destruction complex, which includes Axin and adenomatous polyposis coli (APC), glycogen synthase 

kinase (GSK)-3β and casein kinase (CK)1, protein phosphatase 2A (PP2A), and β-transducin repeat-containing protein (β-

TrCP). After a Wnt ligand binds to the receptor Frizzled (Fz) and the receptor-related protein 5 or 6 (LRP5/6) coreceptor, 

the Wnt–Fz–LRP5/6 complex recruits Disheveled (DVL) and Axin through the intracellular domains of Fz and LRP5/6, 

resulting in β-catenin stabilization. The increased nuclear levels of β-catenin promote interaction with T cell 

factor/lymphoid enhancer factor (TCF/LEF) transcription factor to regulate Wnt-responsive fibrotic genes. 
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Figure 3: molecular targets in the RAAS pathway (Zain and Awan, 2014). 

was associated with reduced mortality and 

hospitalization, as well as with reduction in blood 

levels of fibrosis biomarkers and collagen synthesis 

(Zannad et al., 2000). 

In a sub-analysis of the study EPHESUS (the 

Eplerenone Post-Acute Myocardial Infarction Heart 

Failure Efficacy and Survival Study), which 

evaluated the effect of eplerenone in patients with 

HF after MI, treatment with eplerenone showed a 

significant reduction in the risk of mortality and 

hospitalization for all cases after 16 months in 

treated patients with MI complicated by subsequent 

LV and cardiac dysfunction compared to controls 

(Iraqi et al., 2009). A sub-study of the ALDO-DHF 

trial (The Aldosterone Receptor Blockade in 

Diastolic Heart Failure), which included 381 

patients with HFpEF, identified that treatment with 

spironolactone reduces PICP levels and improves 

diastolic function after 12 months of treatment 

(Ravassa et al., 2018). 

The administration of sacubitril/valsartan, which 

combines ARB and a neprilysin inhibitor, has 

demonstrated effectiveness in reducing fibrosis. The 

PARAMOUNT (Prospective Comparison of ARNI 

With ARB on Management of Heart Failure with 

Preserved Ejection Fraction) trial provided evidence 

that treatment with sacubitril/valsartan leads to a 

reduction in plasma biomarkers associated with 

cardiac fibrosis in patients diagnosed with HFpEF. 

(Cunningham et al., 2020). 

3.2. Inflammation Modulators 

Tissue damage triggers a phlogistic process that 

triggers the deposition of fibrotic tissue. Tumor 

necrosis factor α (TNF-α) plays an important role in 

stimulating cardiac fibrosis (Sun et al., 2007). 

However, the RENEWAL (Randomized etanercept 

Worldwide evaluation) study, which evaluated the  

 
effect of the TNF-α antagonist etanercept in 

patients with HF, showed no benefit in terms of 

mortality and hospitalization (Mann et al., 2004). 

The ATTACH (anti-TNF Therapy Against 

Congestive Heart failure) study was prematurely 

discontinued due to increased mortality in patients 

with HF, a TNF-α antagonist (Chung et al., 2003). 

The later discovery that TNF-1 and TNF-2 

receptors have opposite effects on cardiac 

remodeling may partly explain the disappointing 

results of TNF-α inhibition (Hamid et al., 2009). 

Colchicine has an important anti-inflammatory 

action because of its effectiveness in inhibiting 

inflammasome network, various pro-inflammatory 

cytokines and chemokines (Roubille et al., 2013). 

In mouse models of MI, colchicine has been shown 

to be effective in reducing the extent of the 

infarcted area. The reduction in the extent of 

fibrosis has been confirmed in a study on rabbit 

with HF (Akodad et al., 2017). The COLCOT 

(COLCHICINE Cardiovascular Outcomes Trial) 

study, which randomized 4745 patients with MI to 

colchicine or placebo, revealed a lower risk of 

ischemic cardiovascular events at 30 days from MI 

in the treated group (Akodad et al., 2020). The 

effect on myocardial fibrosis has not been 

specifically assessed. The recent COVERT-MI 

study (colchicine for Left ventricular Remodeling 

Treatment in Acute Myocardial Infarction) 

revealed that patients treated with colchicine after 

MI showed no difference in size of infarction 

compared to the controls (Mewton et al., 2021). 

Besides reducing cholesterol, statins have a 

powerful anti-inflammatory and cardioprotective 

action by inhibiting the proteins Ras, Rho, and NF-

kB, and activating the PI3K/Akt/Enos pathway 

(Yamamoto et al., 2011). Rosuvastatin has been 

shown to be effective in attenuating cardiac fibrosis  
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in mouse models of hypertensive heart disease 

(Chang et al., 2009). Conflicting results were 

obtained in a sub-study of the UNIVERSE trial 

(The rosuvastatin Impact on VEentricular 

Remodeling cytokineS and neurohormonEs) 

(Ashton et al., 2011). In conclusion, the role of 

statins in the treatment of chronic HF is still 

controversial. 

3.3. Anti-TGF-β Antibodies 

Transforming-β growth factor (TGF-β) has a central 

role in the development of cardiac fibrosis. TGF-β 

achieves its pro-fibrotic effect by the 

ALK/Smad2/3/Smad4, TAK/p-38/JNK, and 

NOX4/ROS signaling pathways (Fang et al., 2017). 

In mouse models of MI and hypertensive heart 

disease, anti-TGF-β and ALK5 antibodies led to 

reduction of myocardial fibrosis but not 

cardiomyocyte hypertrophy. However, anti-TGF-β 

antibody therapy has also been associated with 

serious adverse effects, including LV dilation and 

increased mortality (Frantz et al., 2008). The 

blockade of the TGF-β signaling pathway through 

antibodies therefore seems dangerous, while less 

intense inhibition may be more effective (Morfino 

et al., 2022). 

3.4. Pirfenidone 

Pirfenidone is an oral anti-fibrotic drug approved 

for the treatment of idiopathic pulmonary fibrosis 

(Kreuter et al., 2016). Due to the substantial 

overlap in pathophysiological mechanisms between 

pulmonary and cardiac fibrosis, there has been 

growing interest in exploring the application of 

pirfenidone in the treatment of cardiovascular 

diseases (Aimo et al., 2022).  

 
The mechanism of action of pirfenidone remains to 

be elucidated, but it seems to reduce the expression 

of pro-fibrotic factors such as TGF-β and pro-

inflammatory cytokines such as TNF-α, interleukin 

(IL)-4, and IL-13 (Oku et al., 2008). Pirfenidone 

also promotes MMPs expression with subsequent 

reduction of ECM protein accumulation (Shi et al., 

2011). Pirfenidone could also contribute to the 

modulation of activation and proliferation of T and 

B cells, thus regulating the secretion of numerous 

pro-inflammatory and pro-fibrotic molecules, such 

as TNF-α and TGF-β (Du et al., 2017; Visner et 

al., 2009). Different actions of pirfenidone in 

management of cardiac fibrosis are illustrated in 

Figure 4. 

In mouse models of hypertension, the 

administration of pirfenidone has been associated 

with reduced LV hypertrophy and increased 

survival compared to controls with reduction in 

ventricular remodeling and preventing interstitial 

fibrosis induced by Ang II infusion (Yamazaki et 

al., 2012). Only two retrospective studies evaluated 

the efficacy of pirfenidone on cardiac parameters in 

patients with IPF. In both, no association was 

found between pirfenidone administration and 

cardiac functions (Al-Ansari et al., 2020; 

AlAnsari et al., 2020). 

 In the PIROUETTE phase II study, which 

involved 94 patients with HFpEF and extended 

fibrosis, the use of pirfenidone led to a modest 

reduction in ECV. Specifically, after a 52-week 

follow-up, the pirfenidone-treated group 

experienced an absolute reduction of 0.7% in ECV, 

whereas the placebo-treated controls showed an 

increase of 0.5%. However, it's important to note 

that this limited effect was not associated with  

 
Figure 4: Molecular mechanisms of pirfenidone (PFD) in the reduction in fibrosis. Reactive oxygen species (ROS) are 

scavenged, transforming growth factor (TGF-β) and Interleukin 6 (IL-6) are downregulated. Inflammation markers e.g. 

tumor necrosis factor (TNF-α) are inhibited (Macías-Barragán et al., 2010). 
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significant changes in diastolic function parameters 

(Lewis et al., 2021). 

4. Empagliflozin as a Future 

Candidate for Cardiac Fibrosis 

Empagliflozin is a relatively recent medication that 

functions as an inhibitor of the sodium-glucose 

cotransporter 2 (SGLT2). Its primary purpose is to 

increase the excretion of glucose through urine, 

leading to improved glycemic control and glucose 

metabolism. This drug has demonstrated 

effectiveness in reducing glucotoxicity and insulin 

resistance, making it valuable for patients with type 

2 diabetes mellitus (T2DM). Moreover, 

empagliflozin has exhibited additional benefits, 

such as nephroprotection, and has emerged as a 

significant advancement in the treatment of heart 

failure (HF) (Forycka et al., 2022).  

Empagliflozin has shown several notable benefits in 

clinical trials. It is associated with a reduction in 

heart failure-related hospitalizations and a 

decreased risk of cardiovascular-related deaths. 

Additionally, empagliflozin treatment can lower the 

chances of renal events, including death from 

kidney-related causes and the development of end-

stage renal failure. The drug is generally well-

tolerated and considered safe. In patients with 

inadequate control of blood sugar levels, 

empagliflozin, alone or in combination with other 

treatments, effectively reduces fasting and post-

meal blood glucose levels, average daily glucose 

levels and glycated hemoglobin A1C (HbA1C). It 

also results in significant weight loss for individuals 

with T2DM (Frampton, 2022). 

The SGLT2 inhibitor empagliflozin was found to 

ameliorate myocardial fibrosis partly through 

inhibition of collagen formation and deposition via 

the classical TGF-β/Smad pathway and decreases 

oxidative stress via promoting Nrf2 translocation to 

the nucleus and activating Nrf2/ARE signalling in 

the type 2 diabetic KK-Ay mice model. In addition, 

8 weeks of empagliflozin treatment rescues the LV 

structure and function in diabetic mice (Li et al., 

2019).  

In a recent study, dapagliflozin -another SGLT2i- 

treatment increased cardiac ejection fraction and 

attenuated myocardial fibrosis in normoglycemic 

congestive heart failure rabbits. Dapagliflozin 

produced this effect through suppressing collagen 

formation and deposition via the classical TGF-

β1/SMAD pathway which attenuated myocardial 

fibrosis (Chen et al., 2022). The present review  

 
recommends studying such effects on 

empagliflozin. 

5. Conclusion 

Current review provided a concise summary on the 

current understanding of process of fibrosis in 

cardiac tissues, with different signaling molecules 

implemented in initiation, progression and 

establishment of such histopathological picture in 

myocardium. Present work also demonstrated a 

promising role for empagliflozin as a new anti-

fibrotic effect in rats against fibrosis in the 

myocardium. More work is needed to elucidate 

molecular mechanisms and signaling pathways 

targeted by empagliflozin in cardiac fibrosis 

inhibition. This review is opening the door to the 

possibility of studying empagliflozin therapy for 

protection against cardiac fibrosis in different 

cardiovascular diseases in non-diabetic or pre-

diabetic settings. 
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