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Abstract 

The pharmaceutical industry extensively uses the adaptable 

synthetic polymer known as poly (lactic-co-glycolic acid) 

(PLGA). These benefits have led to its use in drug delivery using 

nanoparticles (NPs) due to its biocompatibility and 

biodegradability polymer, which has a wide range of uses as a 

carrier for creating polymeric nanoparticle drug delivery systems. 

This article overviews the various PLGA nanoparticles (PNPs) 

and their preparation techniques, including emulsification-solvent 

evaporation (Single or Double), emulsification solvent diffusion, 

emulsification reverse salting out, and nanoprecipitation. A brief 

overview of PNPs' physicochemical behaviour and morphology, 

drug loading, particle size and distribution, stability, surface 

charge, drug release, and cytotoxicity evaluation is provided. A 

diagram of the significant uses of PNP in various drug delivery 

systems is presented using the results of this survey in conjunction 

with surface modifications of PNP. This review discusses the 

preparation techniques and characteristics of drugs, polymers, and 

stabilisers used in detail. 

Keywords: Nanoparticles, PLGA, pharmaceutical applications of 

PNPs, Drug, Emulsification solvent evaporation, polymeric 

nanoparticles. 

 

1. Introduction 

 Nanotechnology is the general term for designing, 

producing, characterising, and using materials and 

technologies with the smallest feasible operation at 

the nanometer scale (Silva, 2004). Polymeric  

 
nanoparticles (NPs) are a great way to monitor and 

disperse harmful substances in vivo since they are 

believed to have a longer in vivo circulation and 

better biological stability (Ibrahim et al., 2019). 

Polymeric nanoparticles (NPs) are a great way to 

monitor and disperse harmful substances in vivo  
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since they are believed to have a longer in vivo 

circulation and better biological stability. They 

comprise more than 80% of the therapeutics 

currently used in clinical settings because of their 

small particle size, which makes it easier for them 

to pass through smaller capillaries and then be 

absorbed by cells. This enables effective drug 

accumulation at the target sites (Rani et al., 2017). 

Furthermore, because it is made of biodegradable 

components, the medication might be released 

continuously over several days or weeks at the 

target spot. While natural and synthetic polymers 

are both valuable biological materials for drug 

administration, the use of synthetic biodegradable 

polymers has increased(Michael J. Mitchell et al., 

2021). Polylactic acid (PLA) and polyglycolic acid 

(PGA), particularly PLGA, are thermoplastic 

aliphatic poly(esters) that have attracted a lot of 

interest in the synthetic polymer market because of 

their exceptional biocompatibility, biodegradability, 

and toxicologically harmless metabolites 

(Gunatillake & Adhikari, 2003). 

PLGA is created by the copolymerisation of lactic 

and glycolic acids; using different ratios of lactide 

to glycolide allows the production of different types 

of polylactic acid (PLGA). A common way to 

identify these forms is to look at the ratio of the 

monomers used (PLGA 75:25, for instance, denotes 

a copolymer that is made up of 25% glycolic acid 

and 75% lactic acid)(Gentile et al., 2014). PLGA 

has proven to be one of the most effective 

biodegradable polymers for the creation of 

nanomedicine. This is primarily because it can go 

through hydrolysis within the body, producing 

biodegradable metabolites like lactic acid and 

glycolic acid (as shown in Figure I). These 

metabolites are found in nature and can be 

efficiently processed by the body through the Krebs 

cycle, leading to a low level of systemic toxicity. 

The molar ratio of lactic and glycolic acids in the 

polymer chain, the polymer's molecular weight, its 

degree of crystallinity, and its glass transition 

temperature (Tg) all affect how quickly PLGA 

degrades (Makadia & Siegel, 2011). The 

degradation duration of PLGA and, thus, the release 

profile may be altered by varying the molecular 

weight and lactide/glycolide ratio (Han et al., 

2016).
 Nanoparticles (NPs) can contain many 

therapeutic agents, from small lipophilic or 

hydrophilic drugs to larger molecules like DNA or 

antisense DNA (Gagliardi et al., 2021). The precise 

delivery of these nanoparticles to organs like the 

lymphatic  

 
system, brain, arterial walls, lungs, liver, and spleen, 

as well as their long-term systemic circulation, can 

be achieved by carefully designing the nanoparticles 

(Michael J. Mitchell et al., 2021). The active 

component trapped within the polymeric structure of 

the nanoparticles is sustained release, either through 

diffusion or the slow degradation of the polymer 

matrix. The formulation's therapeutic effectiveness 

is ultimately increased because of the controlled 

release mechanism's sustained release properties 

(Makadia & Siegel, 2011). According to the nature 

of the therapeutic agent intended to be entrapped 

within the PLGA nanoparticles and the desired 

delivery route, the most popular approach for 

producing polymeric nanoparticles is the single or 

double emulsion method, the solvent diffusion 

method, and the nano-precipitation method 

(Chenthamara et al., 2019). The efficacy of 

hydrophilic bioactive compounds is lower than that 

of hydrophobic drug encapsulation. (Rao & 

Geckeler, 2011; Christine Vauthier & Kawthar 

Bouchemal, 2009). 

 
 

Figure I:  Hydrolyzing PLGA yields lactic and 

glycolic acids. These hydrolysis products are 

metabolised through endogenous body 

mechanisms with minimum toxicity(Dodda et al., 

2022). 

 

2 .METHOD OF PREPARATION OF PNPs 

PNPs has completely recorded in the literature as a 

bearer framework for different drug delivery 

frameworks .Various methods are used to prepare 

polymeric nanoparticles, and the choice of an 

appropriate method depends upon various factors;  
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different techniques have been utilised to create 

PNPs(Krishnamoorthy & Mahalingam, 2015).  

As described by numerous researchers, several 

technologies and devices can produce PLGA 

nanoparticles via emulsion- or nanoprecipitation-

based method (Castro et al., 2022; Qi et al., 2019). 

The most popular methods are microfluidics, 

sonication, high shear mixing (HSM), high-pressure 

homogenisation (HPH), and simple mechanical 

stirring. Due to their ease of use and simplicity, two 

commonly used methods include probe sonication 

and simple mechanical stirring. (Hernández-

Giottonini et al., 2020; Huang & Zhang, 2018; 

Operti et al., 2018). Formulation characteristics may 

initially modify the physicochemical properties of 

nanoparticles, as demonstrated by convincing  

 

 
results presented in a recent study by (Hernández-

Giottonini et al., 2020). Various methods of 

preparation are given below: 

2.1 .Single Emulsification-solvent Evaporation 

Method 

In this process, an organic phase is produced by 

dissolving the required amount of PLGA in an 

organic solvent such as dichloromethane, and later, 

the drug is given to this organic phase, which leads 

to dispersion. Then, this dispersion is added to a 

continually stirred aqueous solution with surfactants 

like polysorbate 80, forming a stable emulsion. 

Finally, evaporation removes the organic solvent to 

get PNPs (Makadia & Siegel, 2011) (Zemljič et al., 

2019). This method is schematically shown in 

Fig.(II). 

 

    

 

 
Figure (II). Schematic diagram illustrating the single emulsification solvent evaporation technique 

(Pulingam et al., 2022)  

 

2.2 .Double Emulsification-solvent Evaporation 

Method 

An appropriate amount of the drug is dissolved in 

an aqueous phase, followed by an addition of an 

organic phase, which is developed by dissolving the 

required amount of PLGA in a volatile organic 

solvent such as dichloromethane. Further 

emulsification is accomplished by including the 

water-in-oil (W/O) emulsion into an aqueous phase 

followed by simultaneous stirring and afterwards 

permitting the organic phase to get evaporated, 

which brings about the development of water-in-oil-

in-water (W/O/W) emulsion (Iqbal et al., 2015). 

 
This method is schematically shown in Fig. (III). 

 

2.3 .Emulsification Solvent Diffusion Method 

In this process, an organic phase is first developed 

by incorporating the necessary amount of PLGA in 

a volatile organic solvent such as dichloromethane. 

After that, the drug is added to this organic phase. 

Then, the drug-containing organic solution is added 

to surfactants like polysorbate 80 and polyvinyl 

alcohol under high-speed homogenisation. Finally, 

water is included in nonstop blending to get PNPs 

(Kumar et al., 2012; Patil & Patel, 2020). This 

method is schematically shown in Fig. (IV) 
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Figure (III). Schematic representation of the method of double emulsion solvent evaporation (Panigrahi 

et al., 2021)  

 

 
 

Figure (IV). Schematic diagram illustrating the emulsification solvent diffusion technique (Pulingam et 

al., 2022). 
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A modified emulsification solvent diffusion 

technique was used by (Pereira et al., 2018) to 

produce PLGA-MET NPs with a mean range of 

457.1 nm. PLGA-Cur NPs were successfully 

introduced into cells, and anti-tumor activity was 

successfully identified, PLGA-Cur NPs 

demonstrated better suppression of HL60 and 

HepG2 cancer cells with lower IC50 values 

compared to free curcumin. Additionally, confocal 

microscopy research revealed that curcumin-loaded 

PLGA NPs increased cancer cell mortality 

compared to free curcuminv (Pereira et al., 2018). 

 

 

2.4 .Emulsification Reverse Salting-out Method 

In this process, PLGA, and drug are incorporated in 

a solvent to form an organic phase. After that, an 

aqueous phase is produced by dissolving salting-out 

agents such as magnesium chloride with a colloidal 

stabiliser such as polyvinyl pyrrolidone. Then, 

magnetic stirring emulsifies the aqueous phase with 

the organic phase to form oil in water (W/O) 

emulsion. Finally, PNPs are formed due to the 

diffusion of the organic solvent into the aqueous 

solution. Filtration removes the salting-out agents 

and residual solvent (Vauthier & K. Bouchemal, 

2009). This method is schematically shown in  Fig. 
(V). 

    

 
Figure (V). Schematic illustrating the steps for emulsification reverse salting out (Pulingam et al., 2022) 

 

2.5 . Nanoprecipitation 

In this technique, PLGA and hydrophobic drugs are 

first incorporated in a polar solvent such as 

methanol to form an organic phase. This prepared 

organic phase is added to an aqueous solution  

 
containing emulsifier or surfactant dropwise. The 

diffusion takes place between solvents that lead to 

the formation of PNPs (Hernández-Giottonini et al., 

2020; Rivas et al., 2017). The method is 

schematically represented in Fig. (VI). 

    

 
 

Figure (VI). An illustration of the nanoprecipitation technique (Pulingam et al., 2022) 
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3 .The physicochemical properties of PNPs 

3.1 .Drug Loading/Morphology 

Drugs that were loaded into PNPs may be included 

during PNPs production or after the formation of 

PNPs by dissolving them in the drug solution. Most 

PNPs made using the earlier methods have had their 

morphology examined using TEM, SEM, cryo-

TEM, and AFM. SEM is used to determine the 

shape of the prepared PNPs and their distribution 

(Basu et al., 2017). TEM is used for the 

determination of the shape and internal particulars 

of the prepared PNPs (Jancik Prochazkova et al., 

2020; Wang et al., 2014). 

3.2 .Particle Size and its Distribution 

50 to 600 nm is the recorded mean particle size for 

most PNPs generated using the previously outlined 

procedures. Dynamic light scattering is used to 

determine the particle size and distribution of the 

prepared PNPs (Huang & Zhang, 2018; 

McComiskey & Tajber, 2018; Wang et al., 2014). 

TEM determines the mean particle size of the 

developed PNPs (Huang & Zhang, 2018). 

3.3 . Zeta Potential 

Zeta potential is a vital parameter for the 

determination of the stability of PNPs. Zeta 

potential affects. The particle stability in 

suspension. The more favourable or unfavourable 

zeta potential values are associated with more stable 

or unstable PNPs due to the reduced particle 

aggregation, which is the reason for more repulsion 

between particles (Huang & Zhang, 2018; Yurtdaş 

Kırımlıoğlu et al., 2016). 

3.4. Drug Release 

The drug is mainly released from PNPs by diffusion 

and desorption methods. Numerous parameters 

impact the medication discharge rate from PNPs, 

including the type of polymer, the size of PNPs, the 

biodegradation, dispersion, and solubility of the grid 

materials (Lee & Yeo, 2015). The equation which is 

used to release the drug from PNPs is given below: 

fraction of drug release at time t, n=pattern of drug 

release from PNPs, and k = constant, which implies 

the macromolecular polymer framework 

properties(Herdiana et al., 2022; Rai et al., 2019). 

 
3.5. Stability 

The stability of PNPs is a huge factor in the 

pharmaceutical field until the loss of therapeutic 

efficacy (Cheng et al., 2021). Agglomerations of 

particles, connecting flocculation, and coagulation 

are the dominating elements for the physical 

stability of PNPs (Li et al., 2021). The chemical 

stability of PNPs relies upon the accompanying 

conditions like temperature, pH of the medium sort 

of polymer utilised, and an atomic load of the 

polymer utilised in detail (Li et al., 2022). 

3.6. Cytotoxicity Study & Cellular Uptake 

Cytotoxicity of PNPs has been accomplished to 

determine cell viability. A method known as MTT 

(3-(4, 5-dimethylthiazol-2-yl)-2,5 

diphenyltetrazolium bromide) has been used to 

measure cell viability. ( Prashant et al., 2010). 

Efficient cellular uptake is a significant parameter 

for PNPs. Fluorescence analysis is used to 

determine the cellular uptake of PNPs (Yu et al., 

2019). 

4. PHARMACEUTICAL APPLICATION OF 

PNPs 

4.1. Diabetic Drug Delivery 

Nanotechnology has opened up new research zones 

in the drawn-out arrival of medications to decrease 

the symptoms of the organisation of regular dose 

structure, particularly for treating diabetes mellitus. 

Nowadays, PNPs have been extensively used for 

various anti-diabetic drug deliveries. PNPs have 

been extensively utilised for anti-diabetic drug 

delivery, including metformin hydrochloride (Zhao 

et al., 2020) and insulin (Mansoor et al., 2019; Zhao 

et al., 2020). In those experiments, PNPs were 

employed to (i) improve therapeutic effectiveness 

(M. J. Mitchell et al., 2021), (ii) increase insulin 

loading capacity in PNPs (M. J. Mitchell et al., 

2021), (iii) improve insulin hydrophobicity (Luo et 

al., 2016), (iv) improve the exemplification 

proficiency of the peptide and given to diabetic 

rodents, with decreased BSL, (v) sustaining the 

release of drug in the GIT (Luo et al., 2016), (v) 

improving the delivery of insulin(Luo et al., 2016), 

(vi) facilitating the penetration of NPs in the mucus, 

(vii) improving the GIT mucoadhesive Ness of 

PNPs (Amaral et al., 2020), (viii) enhancing GI 

uptake of insulin, (ix) improving insulin stability  
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and absorption, (x) increasing drug absorption by 

lymphatic uptake, (xi) enhancing hypoglycemic 

effect, (xii) enhancing enzymatic protection and 

bioavailability of insulin (Luo et al., 2016). Because 

of poor oral bioavailability and poor drug loading, 

such as insulin should be restricted until a thorough 

assessment. 

4.2. Cancer Drug Delivery 

Cancer treatment delivery is increasing due to the 

compatibility and biodegradability of polylactic 

acid (PLGA)(Makadia & Siegel, 2011).PNPs have 

been widely used for the delivery of anti-cancer 

drugs, such as taxol (Ma & Mumper, 2013), 9-

Nitrocamptothecin (Derakhshandeh et al., 2010), 

paclitaxel(He et al., 2015), 5-Fluorouracil (Gahtani 

et al., 2023), docetaxel (Kulhari et al., 2014), 

thymopentin (Mohanty et al., 2011), 

xanthones(Tabatabaei Mirakabad et al., 2014), 

curcumin (Pardeshi et al., 2023; Zhu et al., 2024), 

endostar (Danhier et al., 2012), hypericin 

(Dinarvand et al., 2011), rapamycin, doxorubicin, 

etoposide, cisplatin, and vincristine sulfate & 

verapamil hydrochloride(Alvi et al., 2022). These 

PNPs are largely used to slow down drug release, 

improve anti-tumor efficacy, and control drug 

release.PNPs were created for the following 

purposes in the previously mentioned studies: 

 A drug's delayed release over some time up 

to many days. 

 More effective inhibition of tumour 

development. 

 Higher antitumor efficacy as compared to 

free medication. 

 Enhanced NPs display more significant 

cytotoxicity than free medicine on cancer 

cells. 

 Greater cell take-up over non-modified 

particles. 

 Improved adherence of the intestines. 

 Delay drug release for up to four hours. 

 Increasing the bioavailability of curcumin. 

  Indicating sustained release of medication. 

 
 Inhibiting the development of ovarian 

tumours. 

  Regulating the growth of cells that cause 

breast cancer. 

  as an adjuvant therapy for prostate tumours, 

boosting patient compliance and therapeutic 

efficacy. 

 Attaining high entrapment efficiency with 

continuous drug release up to 48 h. 

 Extending the residence time. 

4.3. Transdermal Drug Delivery 

The transdermal course is commonly considered as 

“tolerant benevolent” because of the shirking of 

gastrointestinal reactions, which most need many 

oral arrangements. NPs increase the efficacy of drug 

penetration via the skin barrier and the mucous 

layer. As transdermal drug delivery(Jeong et al., 

2019), PNPs were developed for: (i) in transdermal 

delivery of minoxidil for alopecia treatment (Han et 

al., 2022), (ii) enhancing transdermal delivery of 

indomethacin (Zhang et al., 2013), (iii) improving 

the transdermal delivery of fluefenamic acid 

(Malinovskaja-Gomez et al., 2016), and (iv) 

sustaining drug release for 72 hr (Dilawar et al., 

2022). 

4.4. Protein and Vaccine Delivery 

PNPs have been utilised to deliver protein and 

peptide drugs. PNPs can encapsulate antigenic 

proteins/peptides into their surface(M. Allahyari & 

E. Mohit, 2016; Petrizzo et al., 2015). A few things 

can impact protein discharge rates from PNPs, 

which inherent highlights of the PLGA can 

characterise. The accessible PNPs embodying 

Antigens of various disorders, for example, hepatitis 

B antigens, have been considered. 

Immunostimulants (IS) and antigens co-conveyance 

with PNPs can prevent the fundamentally 

detrimental effects of immunopotentiators and 

stimulate both dendritic cells (DCs) and 

characteristic executioner (NKs) cells, subsequently 

improving the restorative viability of antigen-

stacked PNPs(M. Allahyari & E. Mohit, 2016; Ma 

et al., 2012; Rietscher et al., 2016). According to 

Thomas et al., PNPs containing HBsAg increase 

secretory IgA, IL-2, and IFN-g levels when  
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administered with hydrophobic materials (Santos et 

al., 2012). PNPs layered with Caryota mitis profilin 

to suppress the eosinophil and Th2 cytokine 

separation statement (Mojgan Allahyari & Elham 

Mohit, 2016). Encapsulation of poly (I: C) or 

CpGODN with OVA antigen in PNPs was 

developed to induce potent antigen-specific CTL 

responses(Gutjahr et al., 2016). To improve the 

RGD in vitro model's transport, modified PNPs 

carrying OVA antigen were developed. (Silva et al., 

2016). Changed PNPs containing HBsAg were 

created to prompt fundamentally higher mucosal 

and systemic immune responses as compared to 

non-targeted NPs (Wang et al., 2020). 

PNPs are used as vaccine delivery to convey 

exogenous antigens that can be cross-introduced 

through MHCI buildings to CD8+ cells( Gutjahr et 

al., 2016). PNPs appear to have the exceptional 

capacity to arrive at the MHCI pathway after their 

disguise by DCs (Baleeiro et al., 2015; Hewitt, 

2003). 

CONCLUSION 

In the greater part of the case, in vitro examinations 

convey thankful outcomes. Sadly, these outcomes 

are regular remote reality in vivo. The money-

related perspective must be considered to make 

them attractive as another pharmaceutical dose 

structure for patients and the pharmaceutical 

business everywhere throughout the world. Further 

advances are required to transform the idea of 

medication-stacked PNPs innovation into a sensible, 

down-to-earth application in the up-and-coming age 

of medication conveyance frameworks. 
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